SEC2020 スペクトロメーターシステム ユーザーズガイド ~ソフトウェア編~

Document Version: 2.5.0 Last Revision: July, 2019

目次

1.	スペクトラスマートについて	6
2.	基本システムスペック	7
3.	スペクトラスマートのインストール	8
	インストール前の準備	8
	スペクトラスマートソフトウェアのインストール	8
	デバイスドライバーのインストール	. 11
4.	スペクトラスマートのアンイストール	. 13
5.	スペクトラスマートの使用開始	. 14
	スペクトラスマートの起動	. 14
	デバイス一覧	. 17
	デバイスの詳細情報	. 17
6.	スペクトル測定	. 19
	測定する前に	. 19
	スペクトル測定の設定	. 19
	スペクトル一覧	. 22
	可視スペクトルを表示しない	. 22
	データ取得設定の変更	. 24
	グラフツールバーボタン	. 27
	グラフスケール調整ボタン	. 27
	その他のツールバーボタン	. 35
	スペクトルデータの数値を表示する	. 35
	グラフにマーキングする	. 37
	統計情報	. 42
	スムージング処理	. 43
	ピーク値の表示	. 45
	現在のスペクトル図を保存	. 47
	保存したスペクトル曲線を読み込む	. 56
	個々のスペクトル曲線の削除	. 60
	スペクトルの印刷とプレビュー	.61
	光源制御	. 63
	スペクトルスキャンインターバル	. 64

	自動的に積算時間を設定する	65
	ダークスペクトルの設定	66
	FWHM	66
	スペクトルデータをクリップボードにコピー	67
	ワンショット	69
	測定図を閉じる	69
	一度にすべての測定図を閉じる	70
7.	ストリップチャート(特定波長での経時的測定)	71
	ストリップチャートの設定	71
	グラフツールバーボタン	77
	グラフスケール調整ボタン	78
	記録設定ボタン	79
	その他のツールバーボタン	
	ストリップチャートの保存	
	保存したストリップチャートを読み込む	
	個々のストリップチャート曲線を削除	
	ストリップチャートの印刷と印刷プレビュー	
8.	吸光度測定	
	吸光度の測定条件設定と測定	
	抽出したスペクトル曲線を調べる	
	グラフツールバーボタン	
	リファレンススペクトあるいはダークスペクトルを再設定する	
	現在の吸光度測定を保存	
	保存した吸光度スペクトルを読み込む	
	吸光度測定の個々のスペクトル曲線の削除	
	吸光度測定スペクトルの印刷と印刷プレビュー	
9.	透過率測定	
	透過率の測定条件設定と測定	
	抽出したスペクトル曲線を調べる	
	色情報を調べる	
	グラフツールバーボタン	
	現在の透過率測定を保存	
	保存した透過率スペクトルを読み込む(並びに色情報を計算)	

目次

3

	透過率測定の個々のスペクトル曲線の削除	
	透過率測定スペクトルの印刷と印刷プレビュー	
10.	反射率測定	
	反射率の測定条件設定と測定	128
	抽出したスペクトル曲線を調べる	
	色情報を調べる	
	CIE 色度図を調べる	
	グラフツールバーボタン	
	現在の反射率測定を保存	
	保存した反射率スペクトルを読み込む(並びに色情報を計算)	
	反射率測定の個々のスペクトル曲線の削除	
	反射率測定スペクトルの印刷と印刷プレビュー	
11.	発光強度測定	147
	発光強度の測定条件設定と測定	
	抽出したスペクトル曲線を調べる	
	色情報を調べる	
	CIE 色度図を調べる	
	グラフツールバーボタン	
	現在の発光強度測定の保存	
	保存した発光強度測定スペクトルを読み込む(並びに色情報を計	算)…160
	発光強度測定の個々のスペクトル曲線の削除	
	発光強度測定スペクトルの印刷と印刷プレビュー	
12.	濃度測定	
	濃度の測定条件設定と測定	
	抽出したスペクトル曲線を調べる	
	グラフツールバーボタン	
	濃度測定関連ツールバーボタン	
	現在の濃度測定を保存	
	保存した濃度測定スペクトルを読み込む	
	濃度測定の個々のスペクトル曲線を削除	
	濃度測定の印刷と印刷プレビュー	
13.	トリガーモードの設定	
	トリガーモードの起動(I/O 信号)	
	トリガーモードの起動(スペクトル強度)	

4

	トリガーモードを閉じる	
14.	時系列測定(全波長の経時的測定)	
	連続変化の開始	
	記録した連続変化の読み込みと再生	
15.	アプリケーションの設定	
	デフォルト	
	保存	
	グラフ	
	スムージング処理	
	色情報	
16.	その他の機能	
	言語	
	フォント	
	ウィンドウのデフォルトレイアウト	
17.	お問い合わせ	
付錡	₹A:分光器補正機能説明	
	└─── 暗電流補正	
	└──_ 直線性補正	
	└──	

1. スペクトラスマートについて

スペクトラスマート(SpectraSmart)は小型分光器システム「SEC2020 スペクトロ メーターシステム」用のソフトウェアです。スペクトル、吸光度、透過率、反射 率、発光強度、濃度と多様な光学測定に対応しています。

2. 基本システムスペック

スペクトラスマートをインストールする前に、お使いのコンピュータシステムが 次の基本要件を満たしていることを確認してください。

基本システムスペック			
プロセッサ	1 GHz 以上		
メモリ	1 GB 以上		
ハードディスク空き容量	100 MB 以上		
画面の解像度	1024 x 768 以上		
オペレーティングシステム	Windows 10、Windows 8.1、Windows 7		
ソフトウェア	Microsoft .NET Framework 3.5		

3. スペクトラスマートのインストール

インストール前の準備

インストールする前にシステム管理者(Administrator)権限を持っていることを 確認してください。

スペクトラスマートソフトウェアのインストール

専用ソフトウェア(USBメモリ)をコンピューターにセットし、ドライブを開いて、「setup.exe」をダブルクリックして、インストールプログラムを起動します。

注意:スペクトラスマートをインストールする前に、インストールプログラムは 自動的にコンピューターに Microsoft .NET Framework 3.5 コンポーネン トがインストールされているどうかを確認します。インストールされてい ない場合、このコンポーネントのインストール画面が表示されます。画面 の指示に従って.NET Framework 3.5 コンポーネントをインストールしま す。

	~
For the following components	
NUT Framework 3.5	
Please read the following license agreement Press the page down key t the read of the agreement	200
MICROSOFT SOFTWARE SUPPLEMENTAL LICENSE TERMS	100
MICROSOFT NET FRAMEWORK 3.5 FOR	
MICROSOFT WINDOWS OPERATING SYSTEM	
MICROSOFT WINDOWS OPERATING SYSTEM Microsoft Corporation (or based on where you live, one of its affiliates) licenses this supplement to you. If you are	
MICROSOFT WINDOWS OPERATING SYSTEM Microsoft Corporation (or based on where you live, one of its affiliates) licenses this supplement to you. If you are	
MICROSOFT WINDOWS OPERATING SYSTEM Microsoft Corporation (or based on where you live, one of its affiliates) licenses this supplement to you. If you are www.BULA for preting Do you accept the terms of the pending License Agreement?	
MICROSOFT WINDOWS OPERATING SYSTEM Microsoft Corporation (or based on where you live, one of its affiliates) licenses this sumlement to you. If you are www.EULA for preting Do you accept the terms of the pending License Agroement? If you choose Doe'l Accept install vill dow. To install you must accept the agreement.	

図 1: NET Framework 3.5 コンポーネントをインストール

Microsoft .NET Framework 3.5 のインストールが確認されると、セットアップウィザードが起動します。 画面の指示に従ってインストールを実行します。

図 2: Windows セキュリティの注意喚起-実行を選択

図 3:インストールセットアップウィザード-ウェルカム画面

SpectraSmart		11	×
Select Installation Folder		ļ	-
The installer will install SpectraSmart to the following folder.	2		
To install in the lolder, plot. "Next", To install to a different	iolder, enter it below	or oliok "Braw	oe"
Folder			
C#Program Files (>88/WALSVSpectraSmartV		Browse.	
	1	Disk Cast	-
Install SpectraSmart for yourself, or for anyone who OEveryone That ge	uses this computer	t.	
Cancel	< <u>B</u> ack	Next	>

図 4:インストールセットアップウィザード-インストールフォルダーを選択

Confirm Installation		5
The retailers: wedy to install Spectra	Smarles year computer.	
Click "Next" to start the installation		
	CC 1997	

図 5:インストールセットアップウィザード—インストールを確認

🖉 SpectraSmart			SIE X
Installing SpectraSmart			5
SpectaSmat a being natallad			
Please wat .			
	Cancel	#Book	10918

図 6:インストールセットアップウィザード-スペクトラスマートをインストール中

installation Complete	(5
poctaSmettas been excess	fully retailed.	
Aick "Close" to exit		
		NET Execution
Nationa use Windows Update to	check for any citical updates to the	NET Francework.

図 7:インストールセットアップウィザード-インストール完成

このインストール完成画面が表示されるとインストールは完成となります。 「Close」を押してインストールプログラムを終了させます。

デバイスドライバーのインストール

スペクトラスマートソフトウェアがインストールされると、分光器のドライバー は同時にインストールされます。もし、インストール中に異常が起きドライバー が正常にインストールされなかった場合、手動で分光器のドライバーをインスト ールしてください。ドライバーはスペクトラスマートをインストールした時にユ ーザーが指定したインストールパスの「Driver」フォルダーにコピーされています。

インストールする時にデフォルトパスを使用した場合のドライバーのパスは次の ようになります。

C:¥Program Files¥ALS¥SpectraMart¥Driver¥USB2.0 (32 ビットシステム) C:¥Program Files (x86)¥ALS¥ SpectraMart ¥Driver¥USB2.0 (64 ビットシステム)

ドライバーの手動インストール手順は次のとおりです。

Windows 10/8.1/7

専用ソフトウェア(USBメモリ)、あるいはスペクトラスマートインストールパス の中の「DriverInstaller.exe」プログラムを直接実行して、ドライバーをインスト ールすることができます。または、分光器をコンピューターに繋ぎ、「デバイスマ ネージャ」に入り、手動で「TAURUS」のデバイスドライバーのあるフォルダー を指定して、ドライバーを更新します。

F	Fライ/(-0更新・laurus	
	コンピューター上のドライバーを参照します。	
	次の場所でドライバーを検索します。	
	GAProprim Files United All Sitilized Contract Contract USE 20 平均因一	
	○ 2.12¥96-5隆世集50	
	→ コンピューター上の利用可能なドライバーの一覧から選択します(L) この一覧には、デバイスと互換性がある利用可能なドライバーと、デバイスと同じカテゴルにあるすべて のドライバーが表示されます。	

図 8:64 ビッド Windows 10 システムで手動でドライバーパスを指定する場合 パスを指定し、「次へ」を押してドライバーのインストールを実行します。

不明な点や詳しい説明が必要な場合は、「18.お問い合わせ」の連絡先までお 問い合わせください。

4. スペクトラスマートのアンイストール

スペクトラスマートソフトウェアをアンイストールするには、「コントロールパネ ル」からプログラムをアンインストールしてください、手順は以下のようになり ます。

注意:Windows 10 の「コントロールパネル」を開くには、「スタート」ボタンの 上で右クリックし、ポップアップメニューから 「コントロールパネル」を 選択します。

Windows 10/8.1/7

「コントロールパネル」を開き「プログラム」、「プログラムと機能」を開きます。 リストの中からスペクトラスマートを選択し、「アンインストール」を押し、"アン インストールしますか"に対して、「はい」をクリックします。アンインストール完 了後、画面は自動で閉じます。

プログラムと機能	
SpectraSmart をアンインストールしますか?	
□ 今後、このダイアログボックスを表示しない	はい(<u>Y</u>) いいえ(<u>N</u>)

図 1:アンインストールの確認(Windows 10/8.1/7 システム)

SpectraSmart	
Windows (こ SpectraSmart を設定しています。 しばらくお待ちください。	
キャンセル	

図 2:スペクトラスマートをアンインストール中(Windows 10/8.1/7 システム)

5. スペクトラスマートの使用開始

スペクトラスマートの起動

スペクトラスマートがインストールされるとデスクトップにショートカットが下 図のように配置されます。

図1: デスクトップに配置されたスペクトラスマートのショートカット

マウスでショートカットをダブルクリックし、スペクトラスマートを起動します。 プログラム起動した後に、以下の画面が表示されます。分光器が接続されていな い場合は、左下の「デバイス一覧」枠は空白となっています。

図2:スペクトラスマートの起動、分光器は接続されていない

続いて、分光器をコンピューターに接続します。スペクトラスマートは接続した デバイスを検出し、デバイスを初期化します。同時に以下のメッセージが表示されます。

図3:デバイスの初期化

デバイスの初期化が完了すると、種々のスペクトル測定が可能となります。次の 画面が表示されている場合はスペクトラスマートが測定の準備ができていること を意味します。

図4:スペクトラスマートが準備完了

「測定」メニューから測定方法を選択します。また、以前保存した測定データや 測定設定を「ファイル」メニューから読み込みます。

分光器を先に接続した場合

スペクトラスマートを起動する前に分光器をコンピューターに接続した場合、接続された分光 器に設定されているデフォルトの測定条件が自動的に設定されます。

図5: スペクトラスマートは起動時に、接続した分光器のデフォルトの測定条件が設定される 使用しているコンピューターに複数の分光器に接続している場合、分光器を接続するごとにそれぞれの 分光器のデフォルトの内容が設定され、下図のように「デバイス一覧」の中に複数のデバイスが表示さ れます(赤い枠線がマークした場所)。

デバイス一覧

スペクトラスマートが分光器を検出すると、下図のようにスペクトラスマートの プログラム画面の左側の「デバイス一覧」の中にデバイスが表示されます(赤い枠 線がマークした場所)。

図7:スペクトラスマートのデバイス一覧

「デバイス一覧」にはデバイスの型番、シリアルナンバー、波長範囲等の基本仕 様が表示されます。

注意:シリアルナンバーで、スペクトラスマートはそれぞれのデバイスを識別し ます。ソフトウェア実行中にもデバイスの選択が必要となるウィンドウが あります。複数のデバイスが接続されている場合は、特にデバイスのシリ アルナンバーに注意してください。

デバイスの詳細情報

デバイスの詳細情報を調べるには、「ファイル」メニューから、「デバイス情報」 を選択します。

図8:「ファイル」メニューから 「デバイス情報」を選択

選択すると、デバイスの詳細情報画面が表示されます。

デバイス: DS361AC55009059	9 ~	
青報		
項目	值	^
FWVersion	F002.3.35(A108)	
ModelName	SEC2021-DUVN	
SerialNumber	OS361AC55009059	
Slit size	25um	
ManufactringDate	2018/3/28	
ActivatingDate	2018/3/28	
StartWavelength	200	
EndWavelength	1025	
BackgroundRemoval_Electral	Available	
BackgroundRemoval_Optical	Unavailable	
Linearity Correction	Available	
Straylight Correction	Unavailable	

図9:デバイスの詳細情報

6. スペクトル測定

スペクトラスマートは小型分光器を使用したスペクトル、ストリップチャート、 吸光度、透過率、反射率、発光強度、濃度測定と幅広い測定に対応しています。 この章では、基本となるスペクトル測定について説明します。以降の章では、こ の章のスペクトル測定を元にその他の測定方法を説明します。

測定する前に

各種の測定する前に、測定機器をセットします。例えば、分光器、光源およびキ ュベットホルダーをプラットフォーム上に固定し、分光器とキュベットホルダー の間にファイバーコリメーターを接続します。測定機器の設定方法の詳細につい ては、「SEC2020 スペクトロメーターシステムユーザーズガイド〜機器編〜」を参 照してください。

スペクトル測定の設定

スペクトルを測定するには、「測定」メニューから、「スペクトル」を選択して、「スペクトルを追加…」 画面を開きます。

図1:「測定」メニューから「スペクトル」を選択

the set of			6	- 0
タイムスペクトル設定				
-スデバイスの選択:				
シリアルナンパー				
06361AC55009059				
E VEADE.	20	1-		
	20			
(長表示範囲)	200	- 1025	(200 nm	~ 1025 nm
目かっこ内は増択したソース5	的14200年春雨期	回を示しています。		
目かっこれは選択したソースラ	F/342.00年音表示難	回を示しています。		
まかっこれは選択したソース5	F八42.00半音表示鞋	回を示しています。		
きかっころは選択したソース5	F/【イスDI洋容表示難	回を示しています。		
目かっころは増択したソース5	F/【イス00半容表示難	回を示しています。		
目かっころは選択したソース5	F/【イス00半容表示難	回を示しています。		
目かっころは増択したソース5	「パイスの1千容表示難	回を示しています。		
目かっころは増択したソース5	F/【42.00半容表示難	回を示しています。		
きかっころは選択したソース5	F/【42.00半容表示難	回を示しています。		
きかっころは選択したソース5	F/【イス00半容表示難	回を示しています。	<u>汝</u> へ》	***>

図2:「スペクトルを追加」-「リアルタイムスペクトル設定」

まず、「リアルタイムスペクトル設定」画面からソースデバイス (デバイスシリア ルナンバーで表示される)を選択します。積算時間 (センサーの露光時間)とX軸 の波長範囲 (括弧内にはプログラムが検出したデバイスのサポートする波長範囲 が表示されます。ここでは 200~1025 nm)を入力します。続いて「次へ」を押し ます。

ベクトルを追加。。					170		×
(示說定							
創新しいウィンドウで表示		后前	Spectrum	_0			
BITTOP C. L'HACHIG							
- 环日初7421712835							_
ウインドウ名	2/01/19/1	9					
パクトル名 Bpe	etrum_0						_
	2						
0708							
				C 2		مر در ط	

図3:「スペクトルを追加」 - 「表示設定」

続いて、「表示設定」画面でスペクトル曲線を新しいウィンドウに表示するか既存 のウィンドウに表示するかを指定します。初めて作成するスペクトル図であれば、 新しいウィンドウのみが選択できます。既に他のウィンドウがあれば、新しいス ペクトル曲線を既存のウィンドウに表示して、2つのスペクトル曲線の違いを比較 することができます。この画面では、ビューウィンドウ名、スペクトル曲線の名 と色を設定することができます。スペクトラスマートによって自動的に付けられ たデフォルトを使用することもできます。すべての設定が完了し、「OK」を押すと 新しくスペクトル曲線が表示されます。

図4:新しく作成したスペクトル測定曲線(Spectrum_0)

スペクトル一覧

測定を設定するごとに、スペクトラスマートウィンドウの左側にある「スペクト ル」に設定したスペクトルが表示されます。

注意:スペクトル測定だけでなく、その他の測定で追加された設定条件(例えば 吸光度、透過率…等)も「スペクトル」に表示されます。

可視スペクトルを表示しない

測定したスペクトルにはデフォルトでスペクトルの上に可視スペクトルが表示さ れています。可視スペクトルを表示したくない場合は、「設定」メニューから「ア プリケーションの設定」を選択し、「グラフ」タブで「可視スペクトルの表示」の チェックを外して「OK」を押します。

図 5:「設定」メニューリストから 「アプリケーションの設定」を選択

ワリケーションの設定	the second second second		>
テフォルト設定 保存	ケラフ スムージンゲ	色情報	
C. (5.	1	~	
ウィンドウの貸量。	グラデーション	~	
グラフの背景:	グラデーション	~	
🗹 可根スペケトルの表示			

図6:「アプリケーションの設定」-「グラフ」-「可視スペクトルの表示」のチェックを外す 「可視スペクトルの表示」をオフにすると、下図のようになります。

図7:可視スペクトルを表示しない

データ取得設定の変更

スペクトル測定を設定した後、データ取得設定(例えば:積算時間、数値スキャンの平均回数、Boxcar 幅)を調整します。下図の赤い枠線でマークしたメインメニューの下の「クイック調整フィールド」を使用して調整します。

図8:データ取得設定の変更

「Boxcar 幅」の右側には「E」、「L」、「I」三つのボタンがあります。それぞれ「暗 電流補正」、「直線性補正」、「強度補正」をオン/オフします。詳細は「付録 A:分 光器補正機能説明」を参照してください。更に右にある三つのボタンはそれぞれ 測定の「ワンショット」、データ取得の「抽出開始」、「一時停止」で、データ取得 の開始と一時停止に使います。詳細は「ワンショット」を参照してください。

データの歪み

積算時間を調整する時、下図のように「スペクトルピークが最大許容量値 65535 を超えました。許容範囲内になるよう積算時間を調整してください」の警告メッ セージが表示されることがあります。

図 9:「スペクトルピークが最大許容量値 65535 を超えました。許容範囲内になるよう積算時間を調整し てください」の警告メッセージ

これは、設定した積算時間が長すぎるため、取得したスペクトルのピーク値が最 大許容値 (65535)を超えたことを示します。この時スペクトルは頭打ちとなり、 データは不正確となります。ピーク値が最大許容値内に収まるように積算時間を 短く調整する必要があります。場合によっては、下図のようにスペクトル曲線が 正常に見えでも「スペクトルピークが最大許容量値 65535 を超えました。許容範 囲内になるよう積算時間を調整してください」の警告メッセージが表示されるこ ともあります。

図 10:見た目では正常な曲線に「スペクトルピークが最大許容量値 65535 を超えました。許容範囲内に なるよう積算時間を調整してください」の警告メッセージが表示される

これは、グラフ上に表示された曲線が補正された後の結果であるため、正常に見 えていても元のデータでは許容範囲外となっているためです。そのために、警告 メッセージが消えるまで積算時間を短く調整する必要があります。

注意:この警告メッセージを表示したくない場合は、表示をオフにすることがで きます。「スペクトル数値が 65535 を超えた時の表示メッセージ」を参照し てください。

スペクトラスマートで積算時間の自動設定調整

「クイック調整」フィールドで積算時間を手動で調整する以外に、ツールバーの ボタンを使い、積算時間を自動設定することができます。「自動的に積算時間を設 定する」を参照してください。

グラフツールバーボタン

スペクトル図画面の上部に一列のツールバーボタンがあります。

7r(14的 東京(M_ 別定(M) 製地站 かつFO(M)	л.8-Лн.
Spectrum_1 50 · 编型時間 mi · 干均回数	() Averaga 🔸 🛯 🔹 🖲 Boxcar 🕼 🔹 🔹 🖉 🕵 📲 📕 🔛 🔢
2/9/A-1 # × /Spectr	am Ø
E 240Hr Spectrum_0	■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
SRIOSSCIALSSUSPER - 新闻時間 SAme - 平均回動 1 - Rowcar 優 D - 相應に確定 和th	Spectrum_0

これらのボタンは「**グラフスケール調整ボタン**」と「**その他のツールバーボタン**」 の二つの部分に分けられます。

グラフスケール調整ボタン

スペクトラスマートは、スペクトル、ストリップチャート、吸光度等の測定でス ペクトルが適切に表示されるように X 軸と Y 軸を最適なスケールに自動調整しま す。必要に応じてスケールをカスタマイズするツールバーボタンも用意していま す。

77代4年5 単年(M) 新定(M) 新定応 なら)作	XWI A&7/HE
Spectrum_1 50 * Battings ma *	F151EBD, Average 🔸 🛯 🔹 Boxcar 🛍 🔹 🔹 🖉 🦉 🖉 🖉 🖉 🖉
2/01/4-12 # ×	Spectrum_0
© 245Hk Spectrum 0	T <mark>X</mark> 3 ⊪AAQ ⊠ AND⊟AA N AA?@
SN OSOCIALSEXIONS	
THER: 1	Spectrum 0
Boscar 40.0	
- 43 (C. A.	

これらのボタンの詳細は次のとおりです。

図 11: グラフツールバーボタン

図12:スペクトル図上部のグラフ軸スケールの調整ボタン

グラフ軸スケールの自動調整

1-12	F7(W) A	ルブ(H)				
4	平均回数:	Average	• 8	• Be	okon 🕼	3
2	Spectrum	0				
ſ		۱	2.5	LQ		1A
			_		Spe	ectru
				er rec		- <u>10 - 10</u>

図 13:「オートスケール」ボタン

「オートスケール」ボタンは、X軸とY軸のスケールを最適な状態に自動的に調整します。このボタンを使用した結果は下図のようになります。図のX軸はデバイスがサポートする波長範囲に調整され、Y軸はグラフ全体を可能な限り大きく表示するように調整されています。

図14:「オートスケール」ボタンを使用した効果

Y 軸スケールの自動調整

図 15:「Y 軸オートスケール」ボタン

「Y軸オートスケール」ボタンは、Y軸のスケールを自動的に調整します。このボ タンを使用した結果を下図に示します。図では、最も高い点がY軸の上端まで拡 大されています。

図 16:「Y 軸オートスケール」ボタンを使用した結果

X 軸スケールの自動調整

図 17:「X 軸オートスケール」ボタン

「X軸オートスケール」ボタンはX軸スケールを自動的に調整します。このボタンを使用すると、下図のようにデバイスがサポートする波長範囲にX軸が調整されます。

図 18:「X 軸オートスケール」ボタンを使用した結果

注意:最初から X 軸設定が既にデバイスがサポートする波長範囲になっている場合、「X 軸オートスケール」ボタンを押しても、変更はありません。図を拡大した後にこのボタンを押すと、その効果が確認できます。

拡大

ハンドウ(W) ヘルプ(H)				
• 平均回避: Average	• 0	÷	Boxcar 🕼	٥
Spectrum_0	_			
🗊 🔀 🌖 👙	Q.	0.0		1N
	-		- Sp	ectru
	1	i ar i		- r

図19:「拡大」ボタン

このボタンはグラフを拡大します。ここでは、「オートスケール」ボタンを押して、 X軸とY軸を最適な表示に戻して、次に「拡大」ボタンを押して、その結果を確認します。下図は「**拡大」を3回押した結果**を示しています。

図 20: グラフを拡大した結果

縮小

ハンドウ(W) ヘルプ(H)	
• 平均回避: Average • 🚺	👻 Boxcar 🕮 🧕
Spectrum_0	_
ि 🖬 🔀 🌖 🗇 🗛 🔽	
_	- Spectru
	en nora en norae ao

図 21:「縮小」 ボタン

このボタンはグラフを縮小します。3回拡大した後に、「縮小」ボタンを2回押した結果を下図に示します。

図 22: グラフを縮小した結果

注意:「縮小」ボタンを押し続けると、グラフがデフォルト値に戻り、それ以上、 縮小することはできません。

グラフ設定をアプリケーションのデフォルト値に戻す

図 23:「グラフの設定をデフォルト値に戻す」ボタン

このボタンはグラフの設定をデフォルト値に戻します。このボタンを押して、前の例のグラフをデフォルトの設定に戻します。結果は下図のようになります。

図24: グラフの設定をデフォルト値に戻した結果

グラフの設定

図 25:「グラフ設定」ボタン

このボタンはX軸、Y軸の詳細設定をする画面を開きます。

図 26:「グラフ設定」画面

「グラフの設定」画面では設定したい X 軸と Y 軸の最大値、最小値、及び目盛間 隔が設定できます。ここでは、例として X 軸(波長)範囲を 200~1020 nm の範囲 に設定して、目盛間隔は 100 とします。Y 軸(強度)は 0 から 50000 の範囲に設定 して、目盛間隔は 5000 とします。その結果は下図に示します。

図 27: グラフの XY 軸をユーザーで設定した結果

その他のツールバーボタン

以下の節では、ツールバーのその他のボタンについて説明します。

スペクトルデータの数値を表示する

スペクトル曲線で測定結果の全体像を把握することができます。特定の波長のデ ータ値を見るには、マウスカーソルを曲線上のポイントに合わせデータ値を表示 します。下図に示すように、D2 由来の輝線にマウスカーソルを合わせると、グラ フの上部に実際の波長(655.91)と、グラフの右側にデータ値(43846.47)が表 示されます。

図 28:マウスで特定波長の数値を調べる

マウスカーソルを曲線に合わせる方法では単一のポイントを観察する時に便利で す。すべての測定データを表示するために、スペクトラスマートは図のようにグ ラフの右側に表形式のスペクトルデータウィンドウを用意しています。ウィンド ウの上半部は「スペクトル」リストで、測定中のすべてのスペクトル(現在は 「Spectrum_0」のみ)を表示します。ウィンドウの下半部の「スペクトルデータ」 タブに、スクロール可能なテーブルが示され、右側のスクロールバーを使用して、 チェックしたい波長範囲まで移動します。

スペクトルデータウィンドウを閉じる

スペクトルデータウィンドウを表示したくない場合は、ツールバーの「スペクト ルデータの表示」ボタンを押して、ウィンドウの表示/非表示を切り替えます。

図 29:「スペクトルデータの表示」ボタン

図 30:スペクトルデータウィンドウを閉じた結果

グラフにマーキングする

マウスを使いマークを付ける

スペクトラスマートはグラフに固定したマークを付けるためのツールバーボタン を用意しています。

「グラフにマークを付ける」ボタンを押して、マークをしたい位置でマウスの左 ボタンをダブルクリックするとグラフ上のデータ値が固定して表示されます。

図 32: グラフにマークを付けた結果

例では波長485.94 nm(赤色垂直線)の所にマークを置き、そのデータ値は31544.25 となっています。

注意:マウスを使用してマークを配置すると、プログラムは自動的に近くのピー ク値を探します。ピーク以外の任意の波長のデータ値をマークするには、 スペクトルグラフの空白の場所ではなく、スペクトル曲線上で、マークし たい波長位置をクリックします。それ以外の場所では、クリックしたX軸 の位置ではなく、近くのピーク値の位置にマークが移動します。

スペクトルデータウィンドウでマークを付ける

マウスを使用してマークを付ける方法以外に、スペクトルデータウィンドウから も、スペクトル曲線にマークを付けることができます。利点として、正確に観察 したい波長位置の指定ができます。まず、スペクトルデータウィンドウを閉じて いる場合、ツールバーの「スペクトルデータの表示」ボタンを押してスペクトル データウィンドウを表示します。

図 33: 「スペクトルデータの表示」ボタン

図 34:スペクトルデータウィンドウの「マーク」タブページ

スペクトルデータウィンドウの上半部は測定中のスペクトル曲線、この場合は 「Spectrum_0」のみを一覧表示します。ウィンドウの下半部には「スペクトルデ ータ」と「マーク」のタブがあります。

「マーク」タブには、以前マウスを使って配置したマークがリストに表示されて います。「波長」の欄に観察したい波長(単位は nm)を入力または選択して、そし て「タイプ」の欄でタイプを選択します。選択できるタイプは「Normal」、 「Peak_Intensity」、「Peak_Lamda」、「Peak_FWHM」があります。

この4種類のタイプの用途は次の通りです。 Normal (ノーマル): マーク位置の強度を表示します Peak_Intensity (ピーク値強度): マーク位置に最も近いピークの強度を表 示します Peak_Lamda (ピーク値波長): マーク位置に最も近いピーク波長を表示 します Peak_FWHM (ピーク半値全幅): マーク位置に最も近いピークの半値全幅 を表示します

「波長」と「タイプ」を選択した後、緑の「+」記号(「追加」ボタン)を押します。 下図に示すように、指定された波長位置にマークが追加されます。

図 35:「マーク」タブページにマークを追加

注意:スペクトラスマートのマーク可能な位置は特定の間隔で配置されていま す。その結果、プログラムは指定した波長位置に最も近い位置のマークに 自動的に配置します。

マークを削除

マークを削除する場合は、「マーク」タブページで削除したいマーク(複数選択可能)にチェックを入れ、赤い「X」記号(「削除」ボタン)をクリックします。

図 36:チェックした後に「削除」ボタンを押す

図 37:マークを削除した結果

スペクトルデータページに戻る

「マーク」タブページでマークの追加あるいは削除を終えた後に、「スペクトルデ ータ」タブを押すと、スペクトルデータページに戻ります。

マークを一時的に消す

マークを削除せずに、一時的に表示したくない場合、「グラフにマークを付ける」 ボタンを押すと、マークが一時的に消えます。もう一度「グラフにマークを付け る」ボタンを押すと表示されます。

統計情報

波長範囲を変更し情報を抽出

統計情報では測定スペクトルの特性(例えば:平均、最小、最大と重心)が把握でき ます。特定の波長範囲の正確なデータを観察したい場合、統計情報タブで計算し たい波長範囲を入力して、必要な情報を読み取ります。下図の赤枠では、テーブ ルで現在の平均、最小、最大と重心を読み取っています。

図38:統計情報表示と波長範囲の変更

スムージング処理

元のスペクトル曲線はノイズが存在するため滑らかではありません。スペクトラ スマートには、曲線がより滑らかになるようにスムージング処理機能を用意して います。下図に示すように、スペクトル図上方のツールバーに「スムージング」 ボタンがあります。

図 39:「スムージング」ボタン

このボタンを押すと、「スムージング処理」画面が開きます。

スムージング設定		_		×
-DWTノイズフィル	ター			
🗹 フィルターを有	対にする			
-Savitzky-Golay	フィルター			
📃 フィルターを有	動にする			
スムージング:	11点	~		
多項式次数:	2	~		
モード: 基:	準曲線と測定曲	由線		~
FFT フィルター				
📃 フィルターを有	対にする			
しきい値:	0.01	~		
移動平均				
□ 移動平均を	有効にする	1	~	·
ーカルマンフィルター	-			
🗌 カルマンフィル	ターを有効にす	3		
ーハイパスフィルター	-			
🗌 フィルターを有	対にする	0		
	0	к		

図 40:「スムージング設定」を開く

「スムージング設定」画面上で、「DWT ノイズフィルター」、「Savitzky-Golay フィルター」、「FFT フィルター」、「移動平均」、「カルマンフィルター」、「ハイパスフィルター」の6種類の方法から複数の選択が可能です。

注意:この章のほとんどの例では「Savitzky-Golay フィルター」のデフォルト 「11 点」と「基準曲線と測定曲線」を採用しています。すべてのフィル ターを無効にすると、スペクトル曲線は以下のようになります。

ユーザーズガイド ソフトウェア編

6. スペクトル測定

ピーク値の表示

曲線のピーク値を表示したい場合、スペクトラスマートはピーク値を自動検索して てグラフ上に表示します。ピーク値の表示ボタンを下図に示します。

図 42:「ピーク値」ボタン

「ピーク値」ボタンを押すと、「ピーク情報」画面が表示されます。

図 43:「ピーク情報」画面

「ピークを検索してグラフ上に示す」にチェックを入れて「検索するピークの幅」 と「検索するピークのベースライン」を設定します。設定したピーク値検索幅で 全波長領域をサーチして、都度、最大値を検索します。検索するピークの幅を広 くすると、検索されるピークの数は少なくなります。検索するピークのベースラ インには検索するピークの下限値を設定します。本例において、幅を 350nm、ベ ースラインを 30000 に設定します。「OK」ボタンを押すと、次の結果が表示され ます。

図 44:「ピーク情報」に入力してピークを検索した結果

上図に示すように、スペクトラスマートは波長 486,579,731 nm 付近のピーク値 を検索しデータを表示します。コロン(:)前の数字はピークの波長、コロン(:)後の 数字はピーク値の強度を示します。この強度はセンサーの出力値で、特に単位は ありません。

検索するピークのベースラインが 30000 と設定されたため、それ以外のピーク値

は検出されません。検索するピークのベースラインを 20000 まで下げると、下図のように四つのピークが検出されます。

図 45:「検索するピークのベースライン」を 20000 まで下げた結果

現在のスペクトル図を保存

ツールバーから個々のスペクトル曲線を保存

スペクトルをファイル保存する場合は、グラフ上部ツールバーの「選択したスペ クトルを…として保存する」 ボタンで、現在のスペクトルを保存することができま す。

図 46:「選択したスペクトルを…として保存する」ボタン

このボタンを押すと、「スペクトルを選択…」画面が表示され保存したいスペクト ルが選択できます。その中から一つのみ選択できます。

7 トル選 10 ml <u>0</u>			
um:0			
and the second se			
200	nn	1	
1025	nn		
0.1		アプリケーション	ンの設定
		1	
		(ж
	200 1025 0.1	200 mm 1025 mm	200 nm 1025 nm 0.1 7797-53

図 47:「スペクトルを選択…」 画面

同じウィンドウに複数のスペクトル曲線が存在する場合は、スペクトルを個別に 保存します。保存したいスペクトルを選択して、「OK」を押してください。「名前 を付けて保存」の画面が表示されます。

A 在前在HIJT保守				>
← → + ↑ → PC →	Windows (Ci) + Save		v & Smellik	e ,0
整理・ 新しいフォルター				ii - 0
 PC 3D TJS1D+ \$7000-F \$7000-F \$729107 \$749107 	* 68	原始日神	1218. 1222.	94X
77イル(6(N)) Spectrue 77イル(6(N)) spectrue 77イル(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(n,Dapi (*.api)			
▲ フォルダーの辞表示			祭 存	© ++>211

図 48:「名前を付けて保存」画面

保存先フォルダーとファイル名を設定したら、「保存」を押してください。スペクトルファイルが保存されます。保存時のデフォルトはスペクトラスマート独自の

ファイル形式 (.sps)を使用します。また、他のソフトウェアでも使用できるよう に CSV 形式あるいは TXT 形式で保存することもできます。CSV 形式あるいは TXT 形式で保存するには、「名前を付けて保存」画面の「ファイルの種類」で[csv files (*.csv)]を選択します。

注意:CSV 形式あるいは TXT 形式は他のソフトウェアにしか使用できません。ス ペクトラスマートでは CSV 形式あるいは TXT 形式のスペクトル曲線を読 み取ることはできません。

スペクトルデータ枠から個々のスペクトル曲線を保存

ツールバーの「選択したスペクトルを…として保存する」ボタン以外にも、スペク トルデータ枠から個々のスペクトル曲線を保存することができます。スペクトル データ枠の上半部では「スペクトル」リストに、測定中のすべてのスペクトル曲 線が表示されています。保存したいスペクトルを選択してから右クリックしてポ ップアップメニューを開きます。次に「選択したスペクトルを…として保存する」 を選択します。

図 49:ポップアップメニューで「選択したスペクトルを…として保存する」を選択

上記と同様、「名前を付けて保存」画面が表示され、同様に保存先フォルダーとフ ァイル名を選択した後、「保存」ボタンを押します。

現在のウィンドウにあるすべてのスペクトルを保存する

スペクトラスマートでは、複数のスペクトル曲線を一つのウィンドウに表示する ことができます。ウィンドウ内に複数のスペクトル曲線がある場合、個別にスペ クトルを保存する以外に、一括してすべてのスペクトルを保存することができま す。スペクトルデータウィンドウを閉じている場合、ツールバーの「スペクトル データの表示」ボタンを押してスペクトルデータウィンドウを開きます。スペク トルデータウィンドウ上半部の「スペクトル」リストを右クリックしてポップア ップメニューを開き、「すべてのスペクトルを…に保存する」を選択します。

図 50:ポップアップメニューで「すべてのスペクトルを…に保存する」を選択

次に「フォルダーの参照」画面が表示され、スペクトルの保存先フォルダーを選 択します。

フォルダーの参	照	×
Please sele	ect a folder as the destination.	
	Logs	^
>	MSOCache	
>	- PerfLogs	
>	Program Files	
>	Program Files (x86)	
>	- ProgramData	
>	SWSETUP	
>	Tools	
>	USB Driver	
>	Windows	
>	Windows.old	
>	Windows10Upgrade	
>	ユーザー	¥
新しいファ	tルダ−の作成(<u>N)</u> OK キャンセル	·

図 51:「フォルダーの参照」画面

選択が完了したら「OK」を押します。指定されたフォルダーにはすべてのスペクトルデータファイルが表示されます。ファイル名はスペクトルのタイトル+ファイルの拡張子は.sps となります。ここの例では保存されたファイルは「Spectrum 0.sps」となります。

現在のスペクトル曲線を一時的な記録として保存する

スペクトルをファイルとして保存する以外、スペクトラスマートでは測定中のス ペクトル曲線を一時的な記録として保存することができます。一時的な記録は測 定中のグラフに表示することができます。例えば、光源を変えて測定した場合、 一方を一時的な記録として測定中のスペクトルに重ねることができます。例とし て、先ず白色 LED 光源のスペクトルを測定して一時記録に保存し、次に別の白色 LED 光源に切り替えて測定して比較をします。最初の白色 LED 光源のスペクトル は以下のようになります。

図 52: 一つ目の白色 LED 光源のスペクトル

次に、スペクトルデータウィンドウの「スペクトル」リストでマウスを右クリッ クして、ポップアップメニューで「一時記録として保存する…」を選択します。

図 53:ポップアップメニューで「一時記録として保存する…」を選択

「一時記録の Spectrum 名を入力してください。」のメッセージが表示されます。

一時記録のSpectrum名を入力してください。	_		\times
26151323			
		OK	

図 54:「一時記録の Spectrum 名を入力してください。」メッセージボックス

ー時記録するスペクトルの名前を指定するか、あるいはデフォルトの数字番号を 名前として使用することができます。例えばデフォルトの数字番号を「LED1」に 変更します。

_		×
	OK	
		ок

図 55: デフォルトの一時記録スペクトルの名前を「LED1」に変更

「OK」を押します。スペクトル図の中ではスペクトル曲線(すなわち図の中の「LED1」)が作成されます。

図 56:「スペクトル」リスト内にもう一本の曲線が作成される

二本のスペクトル曲線は完全に重なっているため、一方が表示されていません。 次に、観察しやすくするため、「設定」-「アプリケーションの設定」-「グラフ」 の順に開き、「可視スペクトルの表示」機能をオフにします。

アプリケーションの設定		×
デフォルト設定 保存	グラフ スムージング 色情報	
線幅:	1 ~	
ウィンドウの踦景:	グラデーション 🗸	
グラフの背景:	グラデーション 🗸	
□ 可視スペクトルの表示		
ОК	キャンセル 適用	

図 57:「可視スペクトルの表示」をオフにする

ユーザーズガイド ソフトウェア編

図 58:「可視スペクトルの表示」をオフにした結果

次に、測定光源を白色 LED に切り替えます。

どちらも白色 LED ですが、2つの光源の曲線はスペクトルが異なります。図の中 で細い曲線は最初の一時記録「LED1」、太い曲線は測定中二つ目の LED 光源のス ペクトル曲線「Spectrum_0」です。スペクトルを一時的に記録する必要がなくな った場合、スペクトルデータウィンドウから削除することができます。詳細操作 は「個々のスペクトル曲線の削除」を参照してください。

保存したスペクトル曲線を読み込む

以前保存したスペクトル曲線を読み込んで、今のスペクトルと比較することがで きます。例として現在のスペクトル(Spectrum_0)として保存し、次に橙色半透明 のフィルターを光源の前に置いきます。下図に示すようにスペクトルが変化しま

図 60: 橙色半透明のフィルターを使用して現在のスペクトルを変える

次に、「ファイル」メニューの「スペクトルファイルを開く…」を選択し、先に保存したスペクトルファイル(Spectrum_0.sps)を読み込みます。

7711(E)	表示(1)	測定(M)	扔
スペク	トルファイルを開	K(Q)	
時系列	可測定ファイル	E開く(<u>T</u>)	
すべて	の測定を閉じる	5(<u>C</u>)	
ページ	設定(空)		
印刷行	ルビュー(10		
印刷(P)		
デバイ	ス倍報(<u>D</u>)		
TH (D		
1570	X5		

図 61:「ファイル」の「スペクトルファイルを開く」から以前保存したスペクトルを開く 「既存のファイルを開く」の画面が表示されます。

スペクトルを追加			_		×
既存のファイルを開く					
ファイルを開く:					
C:\Save\Spectrum_0.sps				参照	
🗌 色情報を測定する					
			5	キャン	۲
				ル	

図 62:「スペクトルを追加…」―「既存のファイルを開く」

「ファイルを開く」の横にある「参照」ボタンを使用して、以前保存したファイル(C:¥Save¥Spectrum_0.sps)を選択します。そして「次へ」をクリックすると「表示設定」画面が表示されます。

スペクトルを追加			_		×
表示設定					
○ 新しいウィンドウで表示	名前:	Spectrum_0			
● 既存のウィンドウを選択]				
ウィンドウ名	スペクトルタイ	ブ			
Spectrum_0	Live Spectrum				
スペクトル名: Previously	_Saved_Spectrum				
					_
グラフの色:					
	〈反	ē5 (0K	キャンル	~セ

図 63: 「スペクトルを追加…」一「表示設定」

「表示設定」画面で、「既存のウィンドウを選択」を選択して、スペクトルを現在 の「Spectrum_0」ウィンドウに表示します。このようにスペクトルが重ね書きさ れてスペクトルの差異を簡単に比較することができます。さらに、読み込んだス ペクトルの名前を「Previously_Saved_Spectrum」と設定すると判別しやすくな ります(上図赤い枠線で表示する部分を参照してください)。「OK」を押すと、以 下のような画面が表示されます。

図 64:以前のスペクトルを読み込み、現在のスペクトルと比較

図に示すように、この例では、以前保存したスペクトル曲線(オレンジ色曲線)は可 視スペクトルの全範囲をカバーしていますが、橙色フィルターを加えた後の、現 在のスペクトル「Spectrum_0」は橙色~赤色の波長域しかカバーしていません。 より分かり易く対照するため、一時的に「可視スペクトルの表示」機能をオフに すると(「可視スペクトルを表示しない」を参照)、差異がより明白になります。

図 65:「可視スペクトルの表示」機能をオフにして、スペクトル曲線の比較を容易にする

個々のスペクトル曲線の削除

スペクトル図の上に多くのスペクトル曲線が表示されている場合、必要ではない スペクトル曲線を削除することができます。ここでは前節の「以前保存したスペ クトル」を削除する手順を示します。まず、スペクトルデータウィンドウの中の 「スペクトル」リストで、「Previously_Saved_Spectrum」を選択します。

図 66:スペクトルデータウィンドウで「Previously_Saved_Spectrum」を選択 続いて、「スペクトル|リストの中を右クリックしてポップアップメニューを開き、

「削除」を選択します。

図 67:マウスの右クリックで「スペクトル」リストのポップアップメニュー開き、「削除」を選択

このように選択したスペクトル曲線が削除されます。

図 68:「Previously_Saved_Spectrum」が削除された

スペクトルの印刷とプレビュー

現在のスペクトルを印刷したい場合は、スペクトル図上部のツールバーの「印刷 プレビュー」と「印刷」ボタンを使用します。

図 69:「印刷プレビュー」ボタン

図 70:「印刷」ボタン

「印刷プレビュー」を押すと、「印刷プレビュー」ウィンドウが開き、現在のスペ クトル図が表示されます。

図 71:「印刷プレビュー」ウィンドウ

ウィンドウを拡大して、必要とした図であるか確認できます。印刷プレビューウ ィンドウの左上部にあるプリンターアイコンを押せば印刷がスタートします。ス ペクトルのプレビューが必要ではない場合は、直接、ツールバーの「印刷」ボタ ンを押すと印刷ウィンドウが表示され、印刷することができます。

印刷			>
プリンター			
プリンター名(N) Microsof	t Print to PDF	×	70,(74)BL-
状态: 準備完了			
種類: Microsoft P	rint To PDF		
場所。 PORTPROM	P1		
287F:			77イルへ出力(1)
DREE		ED REI BLAX	
(€) IF (\[]_)		部数(の):	t 📑
()ページ指定(6)	R-SHGD		R.(_)
	パージまでの	100.00	1000
〇連邦にた際分切		1 2	2 3 3
		OK	オッンセル

図 72:「印刷」 ウィンドウ

「ファイル」メニューにも「印刷」と「印刷プレビュー」機能あり、ツールバー ボタンと同じウィンドウが開きます。加えて、「ファイル」メニューには「ページ 設定」があります。

図 73:「ファイル」メニューから「ページ設定」を選択

この機能で用紙、印刷の向き、余白などの印刷形式の設定ができます。

519 E				
用紙				
717(Z):	A4			v
输航方法(2):	自動選択			÷
មានរល់ម៉ាទ	8月(5)	1		
(Q)\$\$\$	左(L)	10	右倒に	10
O 1∰(A)	上口。	10	下(8);	10

図 74: 「ページ設定」画面

光源制御

スペクトラスマートは I/O 信号を介して外部光源のオン/オフを制御することがで きます。スペクトラスマートの光源制御ボタンはウィンドウの右端にあります。 これを押すと光源枠が表示されます。

	-×
MR: 053834C39008059 (9)	
dlei+it+	
$\Box \Rightarrow \pi \Rightarrow \Phi = (0.00)$	
	(
4988	L L
☑ △田ダ≥荒夏 Qh	
团 意水晶光浮 Dri	

図 75:「光源」ボタン

「光源」ボタンの動作モードは「作動」と「非作動」二つのモードがあります。 一度押すと作動します、もう一度押すと非作動となります。

	* X
## : 05361AC35039059	
光夢のレタッター	1
□ > + + + > - (810)	
-104	
(Jan 1)	
◎ ハロゲン光準On	
☑ 重水量大量 On	

図 76:「光源」ボタンの作動と非作動の状態

スペクトルスキャンインターバル

スペクトラスマートは、デフォルトで一定のインターバルで継続的にデータを取得します。そのインターバルは指定した積算時間+約30msとなり、分光器のチップの速度とスペクトラスマートを実行するコンピューターの性能に依存しています。積算時間の設定が50msの場合、約80msごとにスペクトルデータを取得します。必要に応じてインターバル設定は変更できます。

1 NQ A 🕴		
	20	(クトルスキャンインターパル

図 77: 「スペクトルスキャンインターバル」 ボタン

スペクトル図のツールバーの「スペクトルスキャンインターバル」ボタンを押す と、「スペクトルスキャンインターバル」設定画面が表示されます。

スペクトルスキャンインターバル	—		×
☑ ユーザーが設定したスペクトル. ☑ キャン間隔を有効にする	Z		
間隔: 1000	ms	\sim	
ОК			

図 78:「スペクトルスキャンインターバル」設定画面(1000 ms)

「ユーザーが設定したスペクトルスキャン間隔を有効にする」を選択して「イン ターバル」の値を変更して「OK」を押すと、スペクトル図が異なる速度で更新さ れます。上図のようにインターバルを 1000 ms に設定すると、スペクトル図は約 1秒に1回更新されます。

自動的に積算時間を設定する

スペクトル図を作成する時、必ずスペクトルデータの積算時間(センサーの露光時間)を設定します。積算時間が分からない時は、先にデフォルト値(50 ms)でスペクトルを測定し、ツールバーの「積算時間の自動設定」ボタンを押すと、スペクトラスマートは自動的に最適な積算時間を設定します。

図 79:「積算時間の自動設定」ボタン

図 80:「積算時間の自動設定」ボタンを使った結果

例では「積算時間の自動設定」ボタンを使用した後、積算時間は 50 ms から 16 ms へ調整され、スペクトルが全体的に少し下方向へ修正されています。

ダークスペクトルの設定

「積算時間の自動設定」ボタンの右側に「ダークスペクトルの設定」のボタンが あります。

図 81:「ダークスペクトルの設定」ボタン

このボタンの機能は「リファレンススペクトあるいはダークスペクトルを再設定 する」を参照してください。

FWHM

スペクトラスマートには FWHM(半値全幅)をリアルタイムに表示する機能があり ます。「FWHM」ボタンを選択した後に、図形の任意の場所をクリックすると、プ ログラムは自動的に最も近いピーク値を検索し、その FWHM を計算し、スペクト ル図上に表示します。

図 82:「FWHM」ボタン

スペクトルデータをクリップボードにコピー

スペクトルのデータはツールバーの「クリップボード」ボタンを使って、クリッ プボードへコピーし、他のプログラムにペーストして使用することができます。

図 83:「クリップボードヘコピー」ボタン

「クリップボードへコピー」ボタンを押すと、右側の「スペクトルデータ」枠の 内容がすべて選択されてクリップボードへコピーされます。続いて、他のプログ ラムにデータをペーストします。以下は Windows のメモ帳と Microsoft Excel に ペーストした結果です。

🗐 無題 -	、光帳				_	\times
ファイル(<u>F</u>)	編集(<u>E</u>)	書式(<u>O</u>)	表示(⊻)	ヘルプ(<u>H</u>)		
350.18	47.258	24				^
350.63	44.184	67 67				
351.53	39.420	144				
351.98	38.568	884				
352.43	38.691	53 399				
353.33	41.680	196				
353.78	44.174	14				
354.23	46.931 70713	66 167				
355.13	50.865	29				
355.58	50.996	01				
356.03	49.925	078 212				
356.93	44.638	36				
357.38	40.981	33				
357.83	37.07b 33.506	186 122				
000.20	00.000	,22				~

図84:スペクトルデータを「メモ帳」にペーストした結果

🗶 i 🖥	a 🌒 - (° -	🛕 🚽	Book1.	xls>	k - Mic	roso	ft Excel		—		>	×
ファイ	ル ホーム	挿入 /	ページ レイア!	לל	数式		データ 校	調表	示。	১ 🕜	- 6	23
に 貼り付 クリップ	M & ■ • ■ • ■ • • ↓ ↓	S Pゴシック <i>I</i> <u>U</u> ~ ③ ~ <u>ふ</u> ~ フォント	· 11 A* ∧* A · ∠	• •	臺配置	% 数值	A ZAJU	セル マル	Σ - 	27 - 243 - €		
	A1	•	6.	f _x	350.1	8						<
	A	В	С		D		E	F	-	G	i	
1	350.18	47.25824										
2	350.63	44.18478		_								_
3	351.08	41.37167		_								
4	351.53	39.42044		_								-
0 6	301.98 950.49	30.00004		-								-
7	352.43	30.09103										
8	353.33	41 68096		-								
9	353.78	44.17414										
10	354.23	46.93166										
11	354.68	49.41367										
12	355.13	50.86529										
13	355.58	50.99601										
14	356.03	49.92578										
15	356.48	47.73712										- 11
16	356.93	44.63836										-
17	357.38	40.98133										
18	357.83	37.07686										
19	358.28	33.50622		_								-
20	358.73	31.07182 1 /Sheet2	/Sheet3	/ \$							h	
	, ni sneet	平均・108.68	<u>37928</u> <i>≓</i>		の個数・	40	合計:704	7 35171			100%	<u>ت</u>
		+13: 139:08	37928 T	-90	の回致に	40	081: 794	/.351/1			100%	•

図 85:スペクトルデータを「Microsoft Excel」プログラムにペーストした結果

ワンショット

通常、スペクトラスマートは測定の進行中は分光器から継続にデータを取得しま す。1回のみの数値だけでよい場合には、ツールバーの「ワンショット」ボタン を使用します。

[339ave]
田田署治

図 86:「ワンショット」、「抽出開始」、「一時停止」ボタン

ワンショットする前に、必ず先に「一時停止」ボタンで連続取得を一時停止して おいてください。その後、「ワンショット」ボタンを押すごとに、データがキャプ チャされます。連続キャプチャを戻したい場合は、「抽出開始」ボタンを押します。

測定図を閉じる

スペクトル、ストリップチャート、吸光度などの測定図を終了するときは、測定 図画面の右上角の(X)ボタンを押します。

図87:測定図を閉じるボタン

注意:測定図を閉じると、設定した測定条件も消えてしまいます。また同じ測定 条件が必要な場合には、再度、新たに測定条件を設定する必要があります。

一度にすべての測定図を閉じる

上記の機能以外に、スペクトラスマートは「すべての測定を閉じる」ことできま す。多数の測定を閉じる時には非常に便利です。「ファイル」メニューから「すべ ての測定を閉じる」を選択してください。

図 88:「ファイル」メニューから「すべての測定を閉じる」を選択

7. ストリップチャート(特定波長での経時的測定)

ある波長あるいは波長範囲の数値変化を継続的に観察するために、スペクトラス マートにはストリップチャート(Strip Chart)が用意されています。以下の説明のた めに、まずスペクトル測定を設定します。

図1:まずスペクトル測定を作成

ストリップチャートの設定

続いてストリップチャートを作成します。「測定」メニューから、「Strip Chart」を選択して「New Strip Chart を追加…」画面を開きます。

	3/57FAc8		1000 B 1
Spectrum,0 30 •	Strig Chart(S)	平均回家) An	mor • 1
2/0514-1型 目 510-P5 Spectrum,S 日 2/051-5: Spectrum SN 058514C 福田時間 30w 平均回路1 Восси № 0	 税先間(A) 透線車(T) 反射車(E) 発光協動(E) 満面(C) 	0 ×	Spectrum

図2:「測定」メニューから「Strip Chart」を選択

「Strip Chart 設定」の画面は下図のようになります。

New Strip Chartを追加.					_		\times
Strip Chart設定							
ソーススペクトルの	選択:						
スペクトル名			積	算時間	イン	デックス	ζ
Spectrum_0			500	000	0		
測定波長							
◉ 特定波長:		201.00		nm	追加	削	除
○ 波長範囲:	(平均)	201.00	~	1025.00	nm		
○ 波長比率:	分子	201.00		nm			
□ 範囲							
	分母	201.00		nm			
選択	波長(nm)		データ	7名	タイ	ブ	
データ取得間隔――							
◎ ソーススペクト/	ルとの同期						
○ スペクトルスキ	ャン回数:		100		回		
() ms:			100		ミリ秒		
記録設定				次/	` >	キャンル	ノセ

図 3:「New Strip Chart を追加...」 - 「Strip Chart 設定」

まず「Strip Chart 設定」画面から対象とするソーススペクトルを選択します。この場合では、「Spectrum_0」を選択しています。続いて、波長あるいは波長範囲を選択し「追加」を押します。複数の波長を追加する場合には、繰り返して他の波長を選択し「追加」を押します。続いて画面表示の「データ取得間隔」を指定します。ソーススペクトルのデータ取得インターバルと同期するか、スキャン回数を指定するか、スキャン間隔を指定するかを選択します。

「記録設定」を押すと、「記録設定」の画面が表示されて、「開始時刻」、記録のた

めの「データ取得間隔」、「停止時刻」が設定できます。設定し終えたら、「OK」を 押し、さらに現れたダイアローグの「OK」を押します。

設定し終えたら、「New Strip Chart を追加...」画面の「次へ」を押します。

記録設定		_			\times
-開始時刻					
開始前待機時間:	1	ms	\sim		
データ取得間隔					
🗌 ソースとの同期					
各:	500	ms	\sim		
🗌 2番目のデータか	ら取得する				
停止時刻					
🗌 ユーザーによってき	キャンセルされる	まで継続し	て記録	录	
記錄時間:	500	ms	\sim		
			_		
		OK		Cano	el

図 4:「New Strip Chart を追加…」-「Strip Chart 設定」-「記録設定」

New Strip Chartを追	加				—		×
表示設定							
◉ 新しいウィン	ドウで表示		名前:	Strip_Chart_	.0		
○ 既存のウィント	ドウを選択						
ウィンドウ名	5	スペクト	・ルタイフ	,			
スペクトル名:	Strip_Chart_(D					
グラフの色:							
			《戻る	5	OK	キャンル	~t

図 5:「New Strip Chart を追加…」 - 「表示設定」

続いて、「表示設定」でストリップチャートを新しいウィンドウに表示するか、既存のウィンドウに表示するかを指定します。はじめてのストリップチャートの場合は、新しいウィンドウしか選択できません。既に他のストリップチャートがある場合は、既存のストリップチャートに表示することができます。また、「表示設定」画面ではウィンドウ名、スペクトル名、グラフの色を設定することができます。全部設定し終えたら、「OK」を押します。新しく作成したストリップチャートは下図のようになります。

図 6:新しく作成したストリップチャート(Strip_Chart_0)

X 軸目盛はデフォルトの 10 分間隔となっています。デフォルトの 10 分までは自動的に X 軸幅が調整され、10 分を超えると自動的に左へスクロールします(図 7)。

図7:10分を超えるとストリップチャートは自動的にスクロールする 図ではX軸のスタートの目盛は2分30秒となっており、ストリップチャート開始の0秒から変更されています。

一つのストリップチャートに複数の波長を表示する場合

「測定」メニューから「Strip Chart」を選択し、「Strip Chart 設定」画面から「追加」ボタンを押すことで、複数の波長を表示することができます。ここでは、 485.94nm と 655.91nm の強度を表示しています。

図8:一つのストリップチャート図で複数の波長を追跡

注意:複数の波形を表示した時、2本目の曲線が表示されないことがあります。 これはY軸が1本目の曲線のスケールに調整されているためです。この場 合、ツールバーの「図形の軸目盛の大きさを自動調整」ボタンを押してく ださい。上図のように同時に2本の曲線が表示されます。

必要に応じて元のスペクトルにマークを付けることができます(「グラフにマーキ ングする」を参照)。下図はストリップチャートが追跡している2つの波長強度を 表示しています。

図9:スペクトル上に複数の波長をマークして強度を表示する

グラフツールバーボタン

グラフ上部のグラフツールバーでは、グラフのスケール調整、グラフの保存、ストリップチャートの印刷等ができます(赤い枠線でマークした場所)。

図 10:ストリップチャートの上のツールバーボタン

グラフスケール調整ボタン

グラフスケール調整で、ストリップチャートとスペクトル図には2箇所の違いが あります。一つはストリップチャートにはスクロール停止機能があります。二つ 目はX軸の表示時間の調整となります。その他の機能はスペクトル図と同じです。

Strip Chart 表示

/ Spectrum_0 /	Strip_Chart	0					
🗊 🔀 🤢	1111 10	+ 4	ielta time	• min	•	<u>9</u>	
	Strip Cha	*表示	Strip_(Chart_	0		

図 11:「Strip Chart 表示」ボタン

「Strip Chart 表示」ボタンでストリップチャートのスクロールを停止させること ができます。ストリップチャートは連続した記録紙を想定しています。そのため、 グラフは連続的に左へスクロールします。一時的にスクロールを停止したい場合 は、このボタンを押してストリップチャートのスクロールを停止してください。 再び押せば、スクロールが開始されます。このボタンでストリップチャートを停 止しても、データの取得は中断しません。スクロールを再開すると再び連続して データを見ることができます。

ストリップチャートの「作動中」と「停止」の状態はこのボタンの形状から確認 できます。ストリップチャート作動時は、このボタンに青枠が付きます。ストリ ップチャート停止時は青枠はありません。

図 12:「Strip Chart 表示」の「作動中」と「停止」のボタンの形状

表示時間範囲(X 軸)

ここではストリップチャートの表示時間の幅を指定します。デフォルトの表示時 間の幅は 10 分となっています。図の例は 30 分に変更しています。表示時間は、 取得開始からの経過時間(delta time)、取得開始からのデータ数(delta data)と時刻 (min、hour、day)に設定することができます。

図 14: グラフ表示時間幅を 30 分に変える

記録設定ボタン

更にグラフ上部のグラフツールバーには、記録設定のボタンあります(赤い枠線で マークした場所)。

図15:ストリップチャートの上の「記録設定」ツールバーボタン記録

記録

図16:「記録」ボタン左の状態でボタンを押すと記録が開始し、右の状態のとき記録が進行中

「記録」ボタンを押すと、それまで記録されていたデータは消去され、新たにデ ータが記録されます。ストリップチャートの画面もそれまでのグラフは消去され て新たに描画が開始されます。

停止

図 17:「停止」ボタン 右の状態のとき、記録を停止することができる

「停止」ボタンを押すと、レコードの記録が停止します。

記録設定

図 18:「記録設定」ボタン

「記録設定」ボタンを押すと、図 12 の「記録設定」画面が表示され、記録条件の 変更ができます。

レコードを保存

図 19:「レーコードを保存」ボタン 右の状態のとき、レコードを保存することができる

「レコードを保存」ボタンを押すと、「記録」から「停止」までのデータを、保存 先を指定して保存できます。

リール状態

図 20:「リール状態」ボタン

スペクトルデータの並び方は、左の場合は昇順、右の場合は降順となる

「リール状態」ボタンを押すと、スペクトルデータ枠の表示が降順に、もう一度 押すと昇順になります。

その他のツールバーボタン

ストリップチャートの他のツールバーボタンはスペクトル測定と同様です。スペ クトル測定の「その他のツールバーボタン」を参照してください。

ストリップチャートの保存

ストリップチャートの保存はスペクトル測定の保存方法と同じです。スペクトル 測定の「現在のスペクトル図を保存」を参照してください。

保存したストリップチャートを読み込む

以前保存したストリップチャートの読み込みはスペクトル測定と同じです。スペ クトル測定の「保存したスペクトルを読み込む」を参照してください。

個々のストリップチャート曲線を削除

ストリップチャート上に複数のストリップチャート曲線が存在する場合、ある曲 線を削除する方法はスペクトル測定と同じです。スペクトル測定の「個々のスペ クトル曲線の削除」を参照してください。

ストリップチャートの印刷と印刷プレビュー

ストリップチャートの印刷と印刷プレビューの方法はスペクトル測定と同じです。

スペクトル測定の「現在のスペクトル図の印刷と印刷プレビュー」を参照してく ださい。

8. 吸光度測定

吸光度は、光源のスペクトルと被測定物を通過した光のスペクトルから算出され ます。そのため、吸光度を測定するには、まず光源のスペクトルを測定し、続い て被測定物をセットして被測定物を通過した光を測定します。測定が終了すると プログラムは自動的に吸光度スペクトルを計算します。

吸光度の測定条件設定と測定

吸光度を測定するには、「測定」メニューから、「吸光度」を選択して、「吸光度測 定を追加…」画面を開きます。

ファイル(F)	表示(V)	測定(M)	設定(S)	ウィンドウ(W)
		スペク	′トル(S)	
None 50	* 積調	Strip	Chart(S)	回数:
スペクトル一覧		吸光	度(A)	
		透過	率(T)	
		反射	率(R)	
		発光	強度(E)	
		濃度((C)	

図1:「測定」メニューから「吸光度」を選択

選択し終えたら以下の画面が表示されます。

ソースデバイスの選択: シリアルナンバー OS361AC55009059 () パー () パー () パー () 次ハ > () 次ハ >	吸光度測定を追加	_		×
ソースデバイスの選択: シリアルナンバー OS361AC55009059	ソースデバイス			
シリアルナンパー OS361AC55009059 	ソースデバイスの選択:			
OS361AC55009059 	シリアルナンバー			
次へ> 本ャンセル	OS361AC55009059			
)次へ> キャンセル				
次へ> キャンセル				
次へ> キャンセル				
次へ > 本ヤンセル				
次へ> キャンセル				
次へ > キャンセル				
次へ > キャンセル				
次へ > キャンセル				
 次へ > キャンセル				
次へ > キャンセル				
次へ > キャンセル				
	次へ >		キャンセ	ли –

図2:「吸光度測定を追加…」-「ソースデバイスの選択」

ソースデバイスの設定

まず「ソースデバイス」画面でソースデバイス(デバイスシリアルナンバーで表示 される)を選択し、「次へ」を押します。

吸光	度測定を追	bд						-		×
デー	-タ取得パラメ	-9								
₹	漬算時間とピ	ーク値範囲	1							
	積算時間	:	8	~	ms	~	É	目動設定		
	現在のピー	-ク値:			49881	.24 Z	キャンインタ	−バル→フ	キャン間	扇
	推奨ピーク	値範囲:				40000-6	0000			
[7	マムージング -									
	半均回数				1		\sim			
	Boxcar 🖷	.			0		\sim			
É	参照									
	60000									
	50000									
4	40000	• • • • • •								
Lat u	30000									
	20000				MA					
	10000	-		- Contraction	~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~			-	<u>.</u>	
	0 200	300	400	500	600	700	800	900	100	-
L	Wavelength (nm)									
							次へ >		キャンセル	b

図3:「吸光度測定を追加…」-「データ取得パラメータ」

積算時間の設定

続いて、「データ取得パラメータ」の画面で積算時間(センサーの露光時間)を設定 します。プログラムではこの画面を開くと自動的にデフォルトの積算時間が設定 されています。必要に応じて、画面下方のプレビューを参照しながら、積算時間 を調整してください。調整するとプレビューが変化するので、ピーク値を画面上 の推奨ピーク値範囲内に設定してください。例ではピーク値を40000-60000の 範囲内に設定しています。

調整が上手くいかない場合には「自動設定」ボタンを押して、プログラムに自動 的に設定させることもできます。

積算時間を設定し終えたら、必要に応じて、スペクトルスキャンのインターバル を設定します。「スペクトルインターバル→スキャン間隔」ボタンを押して、「ス ペクトルスキャンインターバル」の画面上の「ユーザーが設定したスペクトルス

キャン間隔を有効にする」にチェックを入れて、インターバルを入力します(デフォルトは 500 ms)。

スペクトルスキャンインターバル	—		\times
✓ ユーザーが設定したスペクトルス キャン間隔を有効にする			
間隔: 500 n	ns	\sim	
ОК			

図4:「スペクトルスキャンインターバル」

スムージング処理の設定

スペクトル曲線に対してスムージング処理を行うことができます。「平均回数」に 平均値を計算するためのスキャン回数を指定します。これにより一回のみのデー タ取得よりも曲線の変動を小さくすることができます。また、「Boxcar 幅」には移 動平均計算に使用するデータ数を指定します。これにより曲線の急な変化を減ら すことができます。Boxcar の幅が大きいほど曲線は滑らかになり、突出した変化 は少なくなります。次の図は、Boxcar の幅を 10 (最大) にしたときのスムージン グ効果を示しています。スムージングをしていない元の図3と比較してください。

及光度測定を追加					-		×
データ取得パラメータ							
- 積算時間とピーク値範囲	ŧ						
積算時間:	8	~	ms 🗸	自	動設定		
現在のピーク値:			30279.37	スキャンインター	−バル→ス	キャン間	鬲
推奨ピーク値範囲:			4000	0-60000			
			1	~			
			·				
Boxcar 🖷:			10	~			
参昭							
2.00							
60000							1
50000							
60000							
60000 50000 40000 1							
60000 50000 40000 40000 20000			An a-				
60000 50000 40000 20000 10000			Mu				
60000 50000 40000 20000 0 20000 0 200 3000	400	500	600 700	0 800	900	100	L
	400	500	600 700 Vavelength (nm)	0 800	900	100	
60000 50000 40000 2000 0 2000 0 200 500	400	500	Vavelength (nm)	0 800	900	100	P

図5:「吸光度測定を追加…」-スムージング処理の効果

注意:次の例では、プログラムのデフォルト値を使用します。つまりスムージン グ処理を行っていません(数値スキャン平均回数= 1、Boxcar 幅= 0)。

すべてのデータ取得パラメータが設定し終えたら、[次へ]を押してください。

図6:「吸光度測定を追加…」-「リファレンススペクトル」

リファレンススペクトルの設定

被測定物が置かれてない光源スペクトル、つまり「リファレンススペクトル」を 設定します。画面上のカラーパッチをクリックしてリファレンススペクトルを実 際に測定して取得するか、以前にリファレンススペクトルファイルを保存してい た場合は「参照」ボタンを使用して読み込むことができます。本例では実際の光 源をリファレンススペクトルとして読み込んでいます(そのため、被測定物を先 にセットしないでください)。リファレンススペクトルを読み込み終えると、画面 下のプレビューでスペクトルデータを確認することができます。続いて「次へ」 を押してください。

図7:「吸光度測定を追加…」―「ダークスペクトル」

ダークスペクトルの設定

リファレンススペクトルの設定が終わったら、センサーに光が当たらない時の測 定値、つまり「ダークスペクトル」を設定します。これより正確なベースライン が設定されます。分光器に接続されている光源を切り離すか、光路を完全に遮蔽 し、画面のグレーパッチを押してダークスペクトルを取得します。一回の取得で なく、複数回の取得で平均値を計算して設定することもできます。プログラムの デフォルトは1回となっています。ここでの例は10回としています。ダークスペ クトルを取得すると、画面の下のプレビューで取得したスペクトルが確認できま す。また、ダークスペクトルの取得中は「Dark Spectrum を取得中…」と表示さ れます。

図 8:「Dark Spectrum を取得中…」の表示

実際にダークスペクトルを取得する以外、デフォルトのダークスペクトルを使用 するか、以前に保存したダークスペクトルファイルを使うことも可能です。デフ ォルトのダークスペクトルは、あくまでテスト用のもので、使用には注意してく ださい。以下は「デフォルトダークスペクトルを使用する」を選択した画面です。

教光策 刻定を追加 。	– 🗆 X
ダークスパクトル	
○ 下のガレーパッチをカリックしてガークスペクトルを取得する	
T-MORE	10
● デフォルトダークペクトルを使用する。	
	26m
C 22	the s busiders.

図 9:「吸光度測定を追加…」—「デフォルトダークスペクトルを使用する」

注意:本例では実際に取得したダークスペクトルを使用します(プログラムのデフ ォルトダークスペクトルではありません)。

ダークスペクトルを設定し終えたら、「次へ」を押してください。

大麦利定を追加			-		X
TRE					
	表示:	ウンドウオー	Absorbance_0		
50/078	2/2044947	,			
24214-5:	Absorbance_0				
9570 은 :					
		(1) 1 ¹ - 1, 100 (1)	1000	-	-
		(開設	OK	朱伦也	14

図 10:「吸光度測定を追加…」—「表示設定」

表示設定

上の図に示すように、グラフのビューウィンドウ名、スペクトル名、グラフ曲線 の色を指定できます。色を指定するには、画面のカラーパッチをクリックして希 望の色を選択します。

色の設定	X
基本色(<u>B</u>):	
	1
作成した色(<u>C</u>):	
	1
色の作成(<u>D</u>) >>	
OK キャンセル	

図 11:「表示設定」-「色の設定」

表示の設定が終わったら、「OK」を押します。下図のように測定図が表示されます。

図 12:新しく作成した吸光度測定図

被測定物を置いて吸光度を測定する

吸光度測定用グラフの設定が終了したら、被測定物をセットします。例として、 白色透明フィルターの吸光度を測定した結果を下図に表示します。

図 13:白色透明フィルターの吸光度測定図

上図に示すように、白色透明フィルターはすべての可視波長の光を吸収するので、 波長全般にわたって吸収が見られます。

青色透明フィルターを置くと、図のようにスペクトルの青色波長域の吸光度が他 の波長域の吸光度より低くなります(つまり、多くの青色光がフィルターを通過 する)。

図 14:青色透明フィルターの吸光度測定図

抽出したスペクトル曲線を調べる

吸光度曲線は複数のスペクトルから算出されています。スペクトラスマートでは 元のスペクトル曲線を調べる機能を用意しています。ツールバーの「抽出したス ペクトル」のボタンを押すことにより、この機能を有効にすることができます。

図 15:「抽出したスペクトル」ボタン

以下の3つの図は、「抽出したスペクトル」を開いて光源、白色透明フィルター、 青色透明フィルターのスペクトル曲線を表示しています。

ユーザーズガイド ソフトウェア編

図 16:光源の吸光度曲線と「抽出したスペクトル」

図 17:白色透明フィルターの吸光度曲線と「抽出したスペクトル」

図 18:青色透明フィルターの吸光度曲線と「抽出したスペクトル」

上の図から、白色透明フィルターの曲線が光源の曲線よりも大幅に下降したこと がわかります。下降した部分はフィルターによって吸収された光の量です。青色 透明フィルターの曲線では青色可視域が残り、その他の波長域の光はほとんど吸 収されています。

グラフツールバーボタン

吸光度測定グラフのツールバーボタンは、スペクトル測定グラフのツールバーと ほとんど同じです。

スムージング処理

吸光度測定では「スムージング」を使用する場合が多くあります。例えば、前の 青色透明フィルターの吸光度曲線には大きなギザギザ見られます。グラフの上部 にある「スムージング」ボタンでスムージングをかけるとこのギザギサが改善さ れます。

スムージング設定			_		×
-DWTノイズフィルタ	!				
🗹 フィルターを有効	幼にする				
-Savitzky-Golay	フィルターー				
🔄 フィルターを有効	幼にする				
スムージング:	11点		~		
多項式次数:	2		~		
モード: 基準	曲線と測定	曲線			~
FFT フィルター					
🗌 フィルターを有効	幼にする				
しきい値:	0.01		\sim		
移動平均					
□ 移動平均を有	対にする	1		~	ŕ
ーカルマンフィルター					
🗌 カルマンフィルタ	マーを有効に	する			
ハイパスフィルター					
🗌 フィルターを有効	幼にする	0			
		ОК			

図 19:「スムージング設定」を開き

「スムージング設定」で Savitzky-Golay フィルターを有効にして、「スムージング」 を 11 点にして、「OK」を押した結果は以下のようになります。

図 20:青色透明フィルターの吸光度測定図から「スムージング」を有効にした結果

上の図から、スムージング処理で曲線が滑らかになったことが分かります。

測定モード切り替えツールバーボタン

「スペクトル測定」で説明したツールバーのボタン以外に、吸光度、透過率、反射率の測定には下図のように、測定モード切り替えボタンがあります。

図 21: 測定モード切換ボタン

スペクトラスマートではツールボタンによりS「スペクトル」、A「吸光度」、T 「透過率」とR「反射率」の4種類のモードに切り替えることができます。以下 の4つの図では、青色透明フィルターについてS、A、T、Rの4種類のモードに 切り替えた結果を示しています。

図 22:「S」ボタンでスペクトルモードに切り替える

ユーザーズガイド ソフトウェア編

8. 吸光度測定

図 23:「A」ボタンで吸光度モードに切り替える

図 24:「T」ボタンで透過率モードに切り替える

図 25:「R」ボタンで反射率モードに切り替える

A「吸光度」とT「透過率」は"相反"となります。これは吸光度ではフィルターに 吸収された光を表し、透過率ではフィルターを通過した光を表すため、二者は相 反することとなります。また、R「反射率」は、光源からの光が被測定物に当たっ て物体に吸収された後に残された光が反射光を測定するため、T「透過率」とR「反 射率」は類似します。

S「スペクトル」、T「透過率」、R「反射率」のピーク位置は一致し、これらのピー ク位置はA「吸光度」のネガティブピーク位置と一致します。

リファレンススペクトあるいはダークスペクトルを再設定する

測定中にリファレンススペクトルまたはダークスペクトルを再設定する必要があ ることがあります。リファレンススペクトルまたはダークスペクトルを再測定し て新しく設定しなくても、スペクトラスマートでは簡便にツールバーボタンで、 下図が示すようにリファレンススペクトルとダークスペクトルを再設定できます。

図 26:「リファレンススペクトルの設定」 と「ダークスペクトルの設定」 ボタン

リファレンススペクトルの設定は、今測定している光源を参照光源に切り換えて、 「リファレンススペクトルの設定」ボタンを押します。ダークスペクトルの設定 は、光源を遮蔽するか、ベースラインを変更するために光源を切り離して、「ダー クスペクトルの設定」ボタンを押します。

リファレンススペクトルの再設定が可能となる場合、ツールバーの「リファレン ススペクトルの設定」ボタンは自動的に表示されます。これは透過率、吸収率、 反射率、濃度測定でも同様です。ダークスペクトルについても再設定が可能とな る場合、ツールバーの「ダークスペクトルの設定」ボタンが自動的に表示されま す。これは透過率、吸収率、反射率、濃度測定でも同様です。

現在の吸光度測定を保存

吸光度測定スペクトルの保存方法はスペクトル測定と同じです。ただし、スペクトル測定ではスペクトルのみ一本の曲線が、吸光度測定では、リファレンススペクトル、ダークスペクトル、吸光度測定スペクトル、「抽出したスペクトル」の4本の曲線が保存されます。

グラフツールバーの「選択したスペクトルを…として保存する」ボタンを使い、一回につき一本のスペクトル曲線が保存されます。一回の操作ですべての曲線を保存するには、スペクトルデータ枠のポップアップメニューの中から「すべてのスペクトルを…として保存する」を選択します。保存した4本の曲線は、下図のよう指定したフォルダーに見ることができます。

🛄 🕑 📑 🔻 Save				<i></i>	o x
776世 第一战 共有	表示				C
* 日本	6 ■ 総動先・ × 米B ・ ■ ■ 比・先・ ■ 名前の実見	10- 新い フォルター	70)(F1 0		
クリップボード	報日	新提	間へ	羅約	
← → + ↑ → PC →	デスクトップ > Save		~ O	Save0後第	ρ.
a set a munit	名 <u>前</u>	更新	日時	種類	サイズ
* 9197 ノクセス	Absorbance_0_Acquired_Spec	trum.sps 201	8/07/10 15:37	SPS 77-11/	47 KB
OneDrive	Absorbance_0_Dark Spectrur	n.sps 201	8/07/10 16:37	SPS 27-12	47 KB
D PC	Absorbance_0_Measurement	Values 201	8/07/10 16:37	5P5 77-14/	47 KB
=	Absorbance_0_Reference Spe	ctrum 201	8/07/10 16:37	5PS 77412	47 KB
<i>∲</i> ≉ットワーク					
4 億の項目					

図 27:「すべてのスペクトルを…として保存する」を選択して保存した吸光度曲線

詳しい保存手順は、スペクトル測定の「現在のスペクトル図を保存」を参照して ください。

保存した吸光度スペクトルを読み込む

以前保存した吸光度スペクトルを読み込むには、スペクトル測定の「保存したス ペクトル曲線を読み込む」のと同様、一回につき一本のスペクトル曲線しか読み 込むことができません。詳細はスペクトル測定の「保存したスペクトル曲線を読 み込む」を参照してください。

吸光度測定の個々のスペクトル曲線の削除

吸光度測定の結果は複数のスペクトル曲線により算出されています。そのためい ずれの曲線も削除しないでください。もし、いずれかの曲線を削除した場合、結 果は正しく計算されません。

吸光度測定スペクトルの印刷と印刷プレビュー

吸光度測定スペクトルの印刷と印刷プレビューの方法はスペクトル測定と同じで す。スペクトル測定の「現在のスペクトル図の印刷と印刷プレビュー」を参照し てください。

9. 透過率測定

透過率は、光源のスペクトルと被測定物を透過した後のスペクトルから算出され ます。そのため、吸光度の測定と同様、透過率を測定するには、まず光源のスペ クトルを測定し、続いて被測定物を透過した光を測定します。測定が終了すると プログラムは自動的に透過率スペクトルを計算します。

透過率の測定条件設定と測定

透過率を測定するには、「測定」メニューから、「透過率」を選択し「透過率測定 を追加…」画面を開きます。

ファイル(F)	表示(V)	測定(M)	設定(S)	ウィンドウ(W
		スペクトル(S)		
None 50	* 積調	Strip	回数:	
スペクトル一覧		吸光	度(A)	
		透過	率(T)	
		反射	率(R)	
		発光	強度(E)	
		濃度((C)	

図1:「測定」メニューから「透過率」を選択

選択し終えたら以下の画面が表示されます。

透過率測定を追加	—		×
ソースデバイス			
ソースデバイスの選択:			
2017年3月			
OS361AC55009059			
< 戻る 次へ >		キャンセ	ιL

図2:「透過率測定を追加…」-「ソースデバイス」

ソースデバイスの設定

まず「ソースデバイス」画面でソースデバイス(デバイスシリアルナンバーで表示 される)を選択し、「次へ」を押します。

透過座測定を追加		-		×
色パウメータ				
RTSA:	2.废 ~			
.	A B C D50 D55 D75 E F1 F2 F3 F4 F6 F7 F8 F9 F10 F11 F12			
		iten >	和心也能	

図3:「透過率測定を追加…」-「色パラメータ」

色パラメータの設定

透過率測定には、CIE 標準観測者の視野角と光源の種類を指定します。視野角には 2 度と 10 度(それぞれ CIE 1931 と CIE 1964 に対応)と、複数の標準光源に対応 しています。この例では、2 度の視野角と D65 光源を指定しています。選択し終 えたら[次へ]を押します。

9. 透過率測定

図4:「透過率測定を追加…」-「データ取得パラメータ」

積算時間の設定

続いて、「データ取得パラメータ」の画面で積算時間(センサーの露光時間)を設定 します。プログラムではこの画面を開くと自動的にデフォルトの積算時間が設定 されています。必要に応じて、画面下方のプレビューを参照しながら、積算時間 を調整してください。調整するとプレビューが変化するので、ピーク値を画面上 の推奨ピーク値範囲内に設定してください。例ではピーク値を40000-60000の 範囲内に設定しています。

調整が上手くいかない場合には「自動設定」ボタンを押して、プログラムに自動 的に設定させることもできます。

積算時間を設定し終えたら、必要に応じて、スペクトルスキャンのインターバル を設定します。「スペクトルインターバル→スキャン間隔」ボタンを押して、「ス ペクトルスキャンインターバル」の画面上の「ユーザーが設定したスペクトルス キャン間隔を有効にする」にチェックを入れて、インターバルを入力します(デフ ォルトは 500 ms)。

スペクトルスキャンイン	ターバル		—		×
☑ ユーザーが設定 ☞ キャン間隔を有	Eしたスペクトル i効にする	ね			
間隔:	500	ms		\sim	
	ОК				

図5:「スペクトルスキャンインターバル」

スムージング処理の設定

スペクトル曲線に対してスムージング処理を行うことができます。「平均回数」に 平均値を計算するためのスキャン回数を指定します。これにより一回のみのデー タ取得によりも曲線の変動を小さくすることができます。また、「Boxcar 幅」には 移動平均計算に使用する前後のデータ数を指定します。これにより曲線の急な変 化を減らすことができます。Boxcar の幅が大きいほど曲線は滑らかになり、突出 した変化は少なくなります。次の図6は、Boxcar の幅を10(最大)にしたときの スムージング効果を示しています。例にはスムージングをしていない元の図4と 比較しています(プレビューの赤い曲線を参照してください)。

9. 透過率測定

図6:「透過率測定を追加…」-スムージング処理の効果

すべてのパラメータの設定が終了したら、「次へ」を押してください。

図7:「透過率測定を追加…」-「リファレンススペクトル」

リファレンススペクトルの設定

被測定物が置かれてない光源スペクトル、つまり「リファレンススペクトル」を 設定します。画面上のカラーパッチをクリックしてリファレンススペクトルを実 際に測定して取得するか、以前にリファレンススペクトルファイルを保存してい た場合は「参照」ボタンを使用して読み込むことができます。本例では実際の光 源をリファレンススペクトルとして読み込んでいます(そのため、被測定物を先 にセットしないでください)。リファレンススペクトルを読み込み終えると、画面 下のプレビューでスペクトルデータを確認することができます。続いて「次へ」 を押してください。

図8:「透過率測定を追加…」-「ダークスペクトル」

ダークスペクトルの設定

リファレンススペクトルの設定が終わったら、センサーに光が当たらない時の測 定値、つまり「ダークスペクトル」を設定します。これより正確なベースライン が設定されます。分光器に接続されている光源を切り離すか、光路を完全に遮蔽 し、画面のグレーパッチを押してダークスペクトルを取得します。一回の取得で なく、複数回の取得で平均値を計算して設定することもできます。プログラムの デフォルトは1回となっています。ここでの例は10回としています。ダークスペ クトルを取得したら、画面の下のプレビューで取得したスペクトルが確認できま す。また、ダークスペクトルの取得中は「Dark Spectrum を取得中…」と表示さ れます。

図 9:「Dark Spectrum を取得中…」の表示

リアルタイムにダークスペクトルを抽出する以外、プログラムのデフォルトダー クスペクトルか以前に保存したダークスペクトルファイルを選択することも可能 です。プログラムのデフォルトダークスペクトルはテスト用に作成されたもので すので、必ずしも適切なものではありませんので注意してください。以下は「デ フォルトダークスペクトルを使用する」の選択画面です。

諸軍到定を追加					LL	×
ダークスペクトル						
○ 〒のグレーパッチをクリッ	らしてターカスパウトルを	観出する				
	平均回路		1]	
● デフォルトスターシベシト	↓を使用する:					
0.7700059-9270	Mitsheld:			1	-	
					CONTRACTOR OF A DESCRIPTION OF A DESCRIP	
				-		
				- 11		
		(調報)	20.0			45

図 10:「透過率測定を追加…」 – 「デフォルトダークスペクトルを使用する」

注意:本例では実際に取得したダークスペクトルを使用します(プログラムのデフ ォルトダークスペクトルは使用しません)。

ダークスペクトルを設定し終えたら、「次へ」を押してください。

透過車測定を追加		- 0	×
表示設定			
●新しいウインドウで表示 ○ 既存のつくっ下りを選択	50 175	Trenemitence_0	3
かいわる しス	K914917.		
-			-
249148 Transmi	itance_0		
9570E:			
		AK 1.1	h.t.
	180	VN 97.	new .

図11:「透過率測定を追加…」-「表示設定」

表示設定

上の図に示すように、グラフのビューウィンドウ名、スペクトル名、グラフ曲線 の色を指定できます。色を指定するには、画面のカラーパッチをクリックして希 望の色を選択します。

色の設定	\times
基本色(<u>B</u>):	
作成した色(<u>C</u>):	
色の作成(<u>D</u>) >>	
OK キャンセル	

図12:「表示設定」-「色の設定」

表示の設定が終わったら、「OK」を押してください。下図のように測定図が表示されます。

図13:新たに作成した透過率測定図

上の図は被測定物をセットしてない状態のため、可視領域全域で透過率はほぼ 100%となっています。

参照光源には 200~1700nm の重水素ハロゲン光源を使用しており、グラフの表示 範囲を 380~780 nm に調整することで、可視領域のグラフを見やすくできます(詳 細方法は「グラフの設定」一節を参照)。調整後のグラフは以下のようになります。

図14:可視領域の波長範囲に調整

被測定物を置き透過率測定を開始

続いて被測定物をセットし透過率を測定します。白色透明フィルターを測定した 結果を下図に表示します。

図15:白色透明フィルターの透過率測定図

上図のように、白色透明フィルターはすべての可視波長の光を吸収するので、波 長全般にわたって透過率が下がります。青色透明フィルターの場合は、下図のよ うに青色可視光部分の透過率が高くなります。

図16:青色透明フィルターの透過率測定図

抽出したスペクトル曲線を調べる

透過率曲線は複数のスペクトルから算出されています。スペクトラスマートでは 測定値が正しいかどうかを確認するために、元のスペクトル曲線を調べる機能を 用意しています。ツールバーの「抽出したスペクトル」のボタンを押すことによ り、この機能を有効にすることができます。

図 17:「抽出したスペクトル」ボタン

以下の3つの図は「抽出したスペクトル」を開いて光源、白色透明フィルター、 青色透明フィルターのスペクトル曲線を表示しています。

図18:光源の透過率曲線と「抽出したスペクトル」

図19:白色透明フィルターの透過率曲線と「抽出したスペクトル」

図 20: 青色透明フィルターの透過率曲線と「抽出したスペクトル」

上記の図から、白色透明フィルターのスペクトル曲線が可視光線上のすべての波 長を透過させることがわかります。青色透明フィルターのスペクトル曲線は、大 部分の青色可視光線を通過させることがわかります。

色情報を調べる

透過率、反射率、発光強度の測定では、スペクトルを調べるだけでなく色情報に ついて調べることができます。スペクトルデータウィンドウの右側の縦の「色情 報」ボタンを押すと「色情報」画面が開きます。

図 21:「色情報」ボタンと「色情報」画面

上の図が示すように、この画面で「抽出したスペクトル」に関する、標準観察者の視野角、光源タイプ、CIE_X、Y、Z座標等が表示されます。

色情報ツールバーボタン

色情報画面のツールバーボタンに「保存」、「記録の保存」、「間隔」、「記録をリセット」、「Strip Chart を表示」が表示されます。

	色情報			4 × 🕞
I,	概要 比較			時
	🗌 保存 🔜 記録	縁の保存 間隔:	0 sec 🦿 記録をリセット 🔤 Strip Chartを表示	系列
1	ITEM	Transmittance_0		
	ModelName	SEC2021-DUVN		
	SerialNumber	OS361AC5500		色

図 22:「色情報」ツールバーボタン

- これらのボタンの機能は次の通りです。
 - 1. 「保存」:現在の色情報をテキスト(CSV)ファイルとして保存します。内 容は画面上と同様です。
 - 2.「記録の保存」:色情報の変化を追跡し、継続的な記録ファイルとして保存 します。これらの色情報はスペクトラスマートプログラムの内部に常に蓄 積されています。
 - 3. 「間隔」:色情報データの表示更新間隔を設定します。
 - 「記録をリセット」:現在蓄積されている内部のデータを消去し、新しく記録が開始されます。色情報を記録する場合は、はじめに「記録をリセット」ボタンを押して内部データを消去し、測定終了後に「記録の保存」ボタンを押すと、データがテキストファイルとして保存されます。
 - 5. 「Strip Chart を表示」:ボタンを使用すると、各色情報の変化をストリップ チャート上に表示することができます。例えば、X 値の変化を表示するには、 「X」を選択し、「Strip Chart を表示」ボタンを押します。

図 23:「色情報」のストリップチャート

色情報の比較

当情報				ά×
概要 比較				
測定: Trans	mittance_0_Acquirec	LSpectn •		
ITEM	Standard	Measurement	Delta	^
х	100	1.1647E+002	1.6470E+001	
Y.	100	1.0610E+002	6.0958E+000	

図 24:「色情報」比較画面

色比較機能を使用すると、現在の測定値と比較のために入力した標準値との差を 表示します。

注意:比較表の中で、「Standard」のフィールドに数値を入力すれば自動的に差が計算されます。

色度図を調べる

スペクトラスマートには色度図が用意されており、被測定物の色度図上の位置と 主波長を調べることができます。測定グラフ右側の縦の「色度図」ボタンでこの 機能が使用できます。

図 25:「色度図」ボタンと「色度図」画面

色度図の切り換え

スペクトラスマートでは CIE 1931、CIE 1976、TM 30-15RfRg、Color Vector Graphic の 4 種類の色度図を用意しており、タブで切換えることができます。

図 27: CIE 1976 色度図

色度図ツールバーボタン

色度図の上部に、「画像の保存」、「印刷プレビュー」、「印刷」、「CCT Quad」のボ タンを用意しています。

色度図の保存

「画像の保存」ボタンで現在表示されている CIE 色度図を画像ファイルとして保存することができます。このボタンを押すと「名前を付けて保存」画面が表示されます。保存するフォルダーとファイル名を入力し「保存」を押します。

							×
+	+ PC + Windows (Ci) + Save		3	マ O Sarvite中	p	
聖世 - 神(い)	2#11-9-					E . (
 ⇒ 30 オブジェクト ⇒ ダウンロード ⇒ デスクトップ ⇒ デスクトップ ⇒ ビデオ ⇒ ビデオ ⇒ E3-597 > = HP_RECOVER ⇒ HP_RECOVER ⇒ HP_TOOLS (6) ⇒ #9+7-7 > = ホームグループ 	a a a a a a a a a a a a a a a a a a a	CIE1931.png	DOE 1976.prg	Color Weter Graphic prog	TM30-15.RF Rg.prog		
7711-6(N)	CE1931.png						N.
77(10時報日)	PNG Formet (*.png)						v
ヘ フォルダーの非表示					使开始	**>/t%	

図 29:「画像の保存」を押して「名前を付けて保存」画面を表示

色度図の印刷

「印刷プレビュー」と「印刷」ボタンで、現在表示されている色度図をプレビュ ーして印刷することができます。

色温度線を表示する

「CCT Quad」では、CIE 1931 色度図上に色温度線を表示します(CIE 1976 モー ドでは無効)。

図 30:「CCT Quad」で色温度線を表示

グラフツールバーボタン

色測定範囲

透過率、反射率、発光強度測定で、可視領域全体でなく特定の波長範囲を観察するには、「色測定範囲」ボタンを使用して波長範囲を指定します。

図 31:「色測定範囲」ボタン

表示された画面で「色測定波長の指定」にチェックを入れ、そして「波長範囲」 フィールドに数値を入力します。

色測定範囲:			—		×
☑ 色測定範囲を	指定				
波長範囲:	400	- 500		nm	
		OK			

図 32:「色測定範囲」で波長範囲を指定

例では 400~500 nm と入力して、「OK」を押します。測定図の中の曲線は該当範 囲のみ表示されます。

図 33: 色測定範囲を指定した結果

「色測定範囲」ボタンを除き、透過率測定図のツールバーボタンは吸光度測定図 のツールバーとほぼ同じです。透過率測定の「グラフツールバーボタン」を参照 してください。

現在の透過率測定を保存

透過率スペクトルの保存方法は吸光度スペクトルと同じです。吸光度測定の「現 在の吸光度測定を保存」を参照してください。

保存した透過率スペクトルを読み込む(並びに色情報を計算)

以前保存した透過率スペクトルの読み込み方法は吸光度スペクトルとほぼ同じで す。ただし、透過率スペクトルを読み込む時には色情報を設定するかどうかを選 択します。

☑ 色情報を測定す	ě	
u19:4 +17	2-00	
	710 711 712	

図 34:透過率測定スペクトル図を読み込む際「色情報を測定する」にチェックを入れる

上図のように、「色情報を測定する」にチェックを入れ、「視野角」と「光源」を 指定します。ファイルの読み込みと同時にこの情報は「色情報」と「色度図」に 反映されます。これ以外は、吸光度スペクトルを読み込みと同じです。吸光度測 定の「保存した吸光度スペクトルを読み込む」を参照してください。

透過率測定の個々のスペクトル曲線の削除

透過率測定の結果は複数のスペクトル曲線により算出されています。そのためい ずれの曲線も削除しないでください。もし、いずれかの曲線を削除した場合、結 果は正しく計算されません。

透過率測定スペクトルの印刷と印刷プレビュー

透過率測定スペクトルの印刷と印刷プレビューの方法はとスペクトル測定と同じです。スペクトル測定の「現在のスペクトル図の印刷と印刷プレビュー」を参照してください。

10.反射率測定

反射率は、光源のスペクトルと被測定物に反射したスペクトルから算出されます。 そのため、吸光度の測定と同様、反射率を測定するには、まず光源のスペクトル を測定し、続いて被測定物に反射した光を測定します。測定が終了するとプログ ラムは自動的に反射率スペクトルを計算します。

反射率の測定条件設定と測定

反射率の測定は、「測定」メニューから、「反射率」を選択して新たに「反射率測 定を追加…」画面を開きます。

図1: 「測定」メニューから「反射率測定を追加…」を選択

選択し終えたら、次の画面が表示されます。

反射率測定を追加	_		×
ソースデバイス			
ソースデバイスの選択:			
201701-15-05-			
093614055009059			
00001800000000			
< 戻る 次へ >		キャンヤ	μ

図2:「反射率測定を追加…」―「ソースデバイス」

ソースデバイスの設定

まず「ソースデバイス」画面でソースデバイス(デバイスシリアルナンバーで表示 される)を選択し、「次へ」を押します。

図3:「反射率測定を追加…」—「色パラメータ」

色パラメータの設定

反射率測定には、CIE 標準観測者の視野角と光源の種類を指定します。視野角には 2 度と 10 度(それぞれ CIE 1931 と CIE 1964 に対応)と、複数の標準光源に対応 しています。この例では、2 度の視野角と D65 光源を指定しています。選択し終 えたら[次へ]を押します。

標準白色反射係数を入力

反射率の測定では、ホワイトキャリブレーションファイルを挿入することで、標準白色反射係数を入力することができます。標準白色反射係数が入力されない場合、被測定物の実際の反射率ではなく、標準白色板が100 %の全反射として計算されます。標準白色反射係数を入力すると、被測定物の絶対反射率の計算ができます。

標準白色のファイルを入力するには、「参照」ボタンを使用してホワイトキャリブ レーションファイルを指定します。選択すると、下のプレビュー画像に白色補正 曲線が表示されます。

図4:「反射率測定を追加…」―白色補正

以下に示すのはホワイトキャリブレーションファイルのフォーマット例です。フ ァイルの第一列は波長、第2列は反射率です。

Color	standard.tx	ct - 义モ帳			—	×
ファイル(<u>F</u>)	編集(<u>E</u>)	書式(<u>O</u>)	表示(⊻)	ヘルプ(<u>H</u>)		
380 385 390 395 400 405 410 425 420 425 430 435 440 455 460 465 465 470 475	0.6899 0.7156 0.7384 0.7585 0.775 0.789 0.7993 0.8077 0.8148 0.8216 0.8269 0.8308 0.8347 0.8387 0.8347 0.8387 0.8419 0.846 0.8499 0.8532 0.8558 0.8558					~
480	0.8603					~

図5:ホワイトキャリブレーションファイル形式の例

注意:以下の例ではプログラムデフォルト値を採用しています。ホワイトキャリ ブレーションファイルを指定していません。

図 6:「反射率測定を追加…」—「データ取得パラメータ」

積算時間の設定

続いて、「データ取得パラメータ」の画面で積算時間(センサーの露光時間)を設定 します。プログラムではこの画面を開くと自動的にデフォルトの積算時間が設定 されています。必要に応じて、画面下方のプレビューを参照しながら、積算時間 を調整してください。調整するとプレビューが変化するので、ピーク値を画面上 の推奨ピーク値範囲内に設定してください。例ではピーク値を40000-60000の 範囲内に設定しています。

調整が上手くいかない場合には「自動設定」ボタンを押して、プログラムに自動 的に設定させることもできます。

積算時間を設定し終えたら、必要に応じて、スペクトルスキャンのインターバル を設定します。「スキャンインターバル→スキャン間隔」ボタンを押して、「スペ クトルスキャンインターバル」の画面上の「ユーザーが設定したスペクトルスキ

スペクトルスキャンインターバル	_	۵) X
✓ ユーザーが設定したスペクトル キャン間隔を有効にする	,Z		
間隔: 500	ms	~	
ОК			

図7:「スペクトルスキャンインターバル」

スムージング処理の設定

スペクトル曲線に対してスムージング処理を行うことができます。「平均回数」に 平均値を計算するためのスキャン回数を指定します。これにより一回のみのデー タ取得によりも曲線の変動を小さくすることができます。また、「Boxcar 幅」には 移動平均計算に使用する前後のデータ数を指定します。これにより曲線の急な変 化を減らすことができます。Boxcar の幅が大きいほど曲線は滑らかになり、突出 した変化は少なくなります。次の図は、Boxcar の幅を 10 (最大) にしたときのス ムージング効果を示しています。例にはスムージングをしていない元の曲線と比 較しています (プレビューの赤い曲線を参照してください)。

10. 反射率測定

図8:「反射率測定を追加…」―スムージング処理效果の例

注意:以下の例ではプログラムのデフォルト値を使用し、すなわちスムージング 処理(数値スキャン平均回数=1、Boxcar 幅=0)を行っていません。

すべてのデータ取得パラメータが設定し終えたら、[次へ]を押してください。

図9:「反射率測定を追加…」―「リファレンススペクトル」

リファレンススペクトルの設定

被測定物が置かれてない光源スペクトル、つまり「リファレンススペクトル」を 設定します。画面上のカラーパッチをクリックしてリファレンススペクトルを実 際に測定して取得するか、以前にリファレンススペクトルファイルを保存してい た場合は「参照」ボタンを使用して読み込むことができます。本例では実際の光 源をリファレンススペクトルとして読み込んでいます(そのため、被測定物を先 にセットしないでください)。リファレンススペクトルを読み込み終えると、画面 下のプレビューでスペクトルデータを確認することができます。続いて「次へ」 を押してください。

図 10:「反射率測定を追加...」—「ダークスペクトル」

ダークスペクトルの設定

リファレンススペクトルの設定が終わったら、センサーに光が当たらない時の測 定値、つまり「ダークスペクトル」を設定します。これより正確なベースライン が設定されます。分光器に接続されている光源を切り離すか、光路を完全に遮蔽 し、画面のグレーパッチを押してダークスペクトルを取得します。一回の取得で なく、複数回の取得で平均値を計算して設定することもできます。プログラムの デフォルトは1回となっています。ここでの例は10回としています。ダークスペ クトルを取得したら、画面の下のプレビューで取得したスペクトルが確認できま す。また、ダークスペクトルの取得中は「Dark Spectrum を取得中…」と表示さ れます。

図 11:「Dark Spectrum を取得中...」の表示

実際にダークスペクトルを抽出する以外に、プログラムのデフォルトダークスペ クトル、あるいは以前スペクトラスマートを使用して保存したダークスペクトル ファイルを読み込むことも可能です。プログラムのデフォルトダークスペクトル はテスト用として用意されたものであり、実際のものとは一致するとは限りませ んので、注意してください。以下は「デフォルトダークスペクトルを使用する」 の選択画面です。

図12:「反射率測定を追加…」―「デフォルトダークスペクトルを使用する」

注意:本例では実際に取得したダークスペクトルを使用しています(プログラムの デフォルトダークスペクトルではありません)。

ダークスペクトルを設定し終えたら、「次へ」を押してください。

室洞定在最加				X
FARE				
8 新しいうんンドウベンドウベンドウ	2表示 を選択	942898	Reflectance_0	
7721778	249	+11917		
2491-11-18:	Refectance	_0		
0520 8				

図13:「反射率測定を追加…」-「表示設定」

表示設定

上の図に示すように、グラフのビューウィンドウ名、スペクトル名、グラフ曲線 の色を指定できます。色を指定するには、画面のカラーパッチをクリックして希 望の色を選択します。

色の設定	×
基本色(<u>B</u>):	
作成した色(<u>C</u>):	
色の作成(<u>D</u>) >>	
OK キャンセル	

図 14:「表示設定」 - 「色の設定」

表示の設定が終わったら、「OK」を押してください。下図のような測定図がを表示 されます。

図15:新しく作成した反射率測定図

測定対象物はまだセットされていないため、可視領域の反射率はほとんど0となります。さらに、リファレンス光源はハロゲン光源のため、その波長範囲はおよ

そ 400 nm 以上であり、表示範囲を 400~780 nm に調整すると、グラフがより見 やすくなります(詳細方法は「グラフの設定」を参照してください)。調整後のグラ フは以下のようになります。

図16:反射率測定図をハロゲン光源の波長範囲に調整

被測定物を置き反射率測定を開始

続いて被測定物を置き反射率を測定します。銀色メタルシートを置き、反射率を 測定した結果を下図に表示します。

図17:銀色メタルシートの反射率測定図

銀色メタルシートはすべての可視波長にわたって光を反射するので、曲線が可視 光の全範囲にわたっています。

続いて、青色メタルシートに換え、その反射率曲線を測定すると、下図のように 青色可視光の反射率は依然高く、黄色光から赤色光の反射率は低くなっています。

図18:青色メタルシートの反射率測定図

抽出したスペクトル曲線を調べる

反射率曲線は複数のスペクトルから算出されています。スペクトラスマートでは 元のスペクトル曲線を調べる機能を用意しています。ツールバーの「抽出したス ペクトル」のボタンを押すことにより、この機能を有効にすることができます。

以下の3つの画像はそれぞれ被測定物を置いてない時、銀色メタルシート、青色 メタルシートの反射率曲線に「抽出したスペクトル」を開いた後の結果です。

ユーザーズガイド ソフトウェア編

図 20: 被測定物をセットしていてない時の反射率測定光源と「抽出したスペクトル」

図 21:銀色メタルシート反射率測定図と「抽出したスペクトル」

図 22:青色メタルシート反射率測定図と「抽出したスペクトル」

上記の図から、銀色メタルシートが可視光線の大半を反射し、青色メタルシート は主に青色の光を反射していることが分かります。

色情報を調べる

透過率、反射率、発光強度の測定では、スペクトルを調べるだけでなく色情報に ついて調べることができます。詳細は透過率測定「色情報を調べる」を参照して ください。

CIE 色度図を調べる

色情報に加えて、被測定物の色度図上の座標と主波長を表示するために CIE 色度 図を用意してします。詳細は透過率の「色度図を調べる」を参照してください。

グラフツールバーボタン

反射率測定グラフのツールバーボタンは透過率測定グラフのツールバーと同じで す。透過率測定の「グラフツールバーボタン」を参照してください。

現在の反射率測定を保存

反射率スペクトルの保存方法は吸光度測定と同じです。吸光度測定の「現在の吸 光度測定を保存」を参照してください。

保存した反射率スペクトルを読み込む(並びに色情報を計算)

以前保存した反射率スペクトルの読み込み方法は吸光度スペクトルとほぼ同じで す。ただし、反射率スペクトルを読み込む時には色情報を設定するかどうかを選 択します。

☑ 包積報記測定す	6	
HITA:	2.度 ~	
光源		
	B C	
	D50 D55	
	D75 E	
	F1 F2 F3	
	F4 F5	
	PD H	
	F9 F10	
	Pi2	

図23:反射率測定スペクトル図を読み込む際「色情報を測定する」にチェックを入れる

上図のように、「色情報を測定する」にチェックを入れ、「視野角」と「光源」を 指定します。ファイルの読み込みと同時にこの情報は「色情報」と「CIE 色度図」 に反映されます。これ以外は、吸光度スペクトルを読み込みと同じです。吸光度 測定の「保存した吸光度スペクトルを読み込む」を参照してください。

反射率測定の個々のスペクトル曲線の削除

反射率測定の結果は複数のスペクトル曲線により算出されています。そのためい ずれの曲線も削除しないでください。もし、いずれかの曲線を削除した場合、結 果は正しく計算されません。

反射率測定スペクトルの印刷と印刷プレビュー

反射率測定スペクトルの印刷と印刷プレビューの方法はスペクトル測定と同じで す。スペクトル測定の「現在のスペクトル図の印刷と印刷プレビュー」を参照し てください。

11. 発光強度測定

発光強度測定は直接、光源を測定します。そのため、参照する光源は必要としま せん。発光強度測定を実施すれば、プログラムは自動的にスペクトルを作成しま す。

発光強度の測定条件設定と測定

発光強度測定を実施するには、「測定」メニューから「発光強度」を選択して、「発 光強度測定を追加...」画面を開きます。

ファイル(F)	表示(V)	測定(M)	設定(S)	ウィンドウ(W)
	1 + 4	スペク	′トル(s)	
None 50	* 積5	Strip	Chart(S)	回数: [/
スペクトル一覧		吸光	度(A)	
		透過	率(T)	
		反射	率(R)	
		発光	強度(E)	
		濃度((C)	

図1:「測定」メニューから「発光強度」を選択

発光強度測定を追加	_		\times
ソースデバイス			
ソースデバイスの選択:			
シリアルナンバー			
OS361AC55009059			
く戻るし、次	× >	キャンセ	л

図2:「発光強度測定を追加…」―「ソースデバイス」

ソースデバイスの設定

まず「ソースデバイス」画面でソースデバイス(デバイスシリアルナンバーで表示 される)を選択し、「次へ」を押します。

図3:「発光強度測定を追加…」-「色パラメータ」

色パラメータの設定

発光強度測定には、CIE 標準観測者の視野角と光源の種類を指定します。 視野角 には2度と10度(それぞれ CIE 1931 と CIE 1964 に対応)と、複数の標準光源に 対応しています。この例では、2度の視野角とD65 光源を指定しています。選択 し終えたら[次へ]を押します。

図4:「発光強度測定を追加…」-「データ取得パラメータ」

積算時間の設定

続いて、「パラメータ抽出」の画面で積算時間(センサーの露光時間)を設定します。 プログラムではこの画面を開くと自動的にデフォルトの積算時間が設定されてい ます。必要に応じて、画面下方のプレビューを参照しながら、積算時間を調整し てください。調整するとプレビューが変化するので、ピーク値を画面上の推奨ピ ーク値範囲内に設定してください。例ではピーク値を 40000 - 60000 の範囲内に 設定しています。

注意:発光強度測定のスペクトルプレビューには「暗電流補正」、「直線性補正」、 「強度補正」が適用されます。そのため他の測定のプレビュー異なり、強 度がかなり下降修正されています。ピーク値を 40000-60000 の範囲内に調 整したい場合、プレビューを参照するではなく、直接、「現在のピーク値」 のフィールドを確認してください。

調整が上手くいかない場合には「自動設定」ボタンを押して、プログラムに自動 的に設定させることもできます。

積算時間を設定し終えたら、必要に応じてスペクトルスキャンのインターバルを 設定します。「スペクトルインターバル→スキャン間隔」ボタンを押して、「スペ クトルスキャンインターバル」の画面上の「ユーザーが設定したスペクトルスキ ャン間隔を有効にする」にチェックを入れて、インターバルを入力します(デフォ ルトは 500 ms)。

図5:「スペクトルスキャンインターバル」

スムージング処理の設定

スペクトル曲線に対してスムージング処理を行うことができます。「平均回数」に 平均値を計算するためのスキャン回数を指定します。これにより一回のみのデー タ取得によりも曲線の変動を小さくすることができます。また、「Boxcar 幅」には 移動平均計算に使用する前後のデータ数を指定します。これにより曲線の急な変 化を減らすことができます。Boxcar の幅が大きいほど曲線は滑らかになり、突出 した変化は少なくなります。次の図は、Boxcar の幅を 10(最大)にしたときのス ムージング効果を示しています。例にはスムージングをしていない元の曲線と比 較しています(プレビューの赤い曲線を参照してください)。

図6:「発光強度測定を追加…」-スムージング処理の效果

注意:以下の例ではプログラムのデフォルト値(数値スキャン平均回数=1、Boxcar 幅=0)を使用し、スムージングをしていません。

すべてのデータ取得パラメータが設定し終えたら、[次へ]を押してください。

図7:「発光強度測定を追加…」―「ダークスペクトル」

ダークスペクトルの設定

センサーに光が当たらない時の測定値、つまり「ダークスペクトル」を設定しま す。これより正確なベースラインが設定されます。分光器に接続されている光源 を切り離すか、光路を完全に遮蔽し、画面のグレーパッチを押してダークスペク トルを取得します。一回の取得でなく、複数回の取得で平均値を計算して設定す ることもできます。プログラムのデフォルトは1回となっています。ここでの例 は10回としています。ダークスペクトルを取得したら、画面の下のプレビューで 取得したスペクトルが確認できます。また、ダークスペクトルの取得中は「Dark Spectrumを取得中…」と表示されます。

図 8:「Dark Spectrum を取得中…」の表示

実際にダークスペクトルを抽出する以外に、プログラムのデフォルトダークスペ クトルか以前に取得し保存した保存したダークスペクトルファイルを読み込むこ とも可能です。プログラムのデフォルトダークスペクトルはテスト用に用意され たもので、実際のものと異なりますので注意してください。以下は「デフォルト ダークスペクトルを使用する」の選択画面です。

光源測定を追加		_		×
ダークスペクトル:				
○ 下のグレーパッチをクリックしてダークスペクトルを抽出する 平均回数:	10]	
● デフォルトスダークペクトルを使用する:				
○ ファイルからダークスペクトルを読み込む:				
			参照	
<戻る ジ	₹^ >		キャンセル	

図9:「発光強度測定を追加…」-「デフォルトダークスペクトルを使用する」

注意:本例では実際に取得したダークスペクトルを使用します(プログラムのデフ ォルトダークスペクトルではありません)。

ダークスペクトルを設定し終えたら、「次へ」を押してください。

発:	光強度測定を追加					_		×
表	示設定							
	 新しいウィンドウで表 既存のウィンドウを選 	示 訳	Ċ.	心ドウ名	Emission	n intensit	y_0	
	ウィンドウ名		スペクトルタイプ					
	スペクトル名:	Emis	sion intensity_0					
	グラフの色:							
				<戻る	ОК		キャンセ	N

図10:「発光強度測定を追加…」-「表示設定」

表示設定

上の図に示すように、グラフのビューウィンドウ名、スペクトル名、グラフ曲線 の色を指定できます。色を指定するには、画面のカラーパッチをクリックして希 望の色を選択します。

色の設定	×
基本色(<u>B</u>):	
作成した色(<u>C</u>):	
色の作成(<u>D</u>) >>	
OK キャンセル	

図 11:「表示設定」 - 「色の設定」

表示の設定が終了したら、「OK」を押してください。スペクトラスマートは下図の ように測定図を表示します。

図12:新たに作成した発光強度測定図

光源の切替

例は光源を赤色に換えて測定した結果です。

図13:赤色光源の測定図

抽出したスペクトル曲線を調べる

発光強度曲線は複数のスペクトルから算出されています。スペクトラスマートで は元のスペクトル曲線を調べる機能を用意しています。ツールバーの「抽出した スペクトル」のボタンを押すことにより、この機能を有効にすることができます。

図14:「抽出したスペクトル」ボタン

図15:赤色光源測定で「抽出したスペクトル」を開く

色情報を調べる

透過率、反射率、発光強度の測定では、スペクトルを調べるだけでなく色情報に ついて調べることができます。詳細は透過率測定の「色情報を調べる」を参照し てください。

CIE 色度図を調べる

色情報に加えて、被測定物の色度図上の座標と主波長を表示するために CIE 色度 図を用意してします。詳細は透過率の「色度図を調べる」を参照してください。

グラフツールバーボタン

発光強度測定グラフのツールバーボタンとスペクトル測定グラフのツールバーは 基本的に同じです。発光強度測定では「色測定範囲」 ボタンが追加されています。

「色測定範囲」ボタンについて、透過率測定の「グラフツールバーボタン」を参照してください。その他のボタンはスペクトル測定図の「グラフツールバーボタン」を参照してください。

現在の発光強度測定の保存

発光強度測定スペクトルの保存方法は吸光度スペクトルと同じです。吸光度測定 の「現在の吸光度測定を保存」を参照してください。

保存した発光強度測定スペクトルを読み込む(並びに色情報を 計算)

以前保存した発光強度測定スペクトルの読み込み方法は吸光度スペクトルとほぼ 同じです。ただし、発光強度測定スペクトルを読み込む時には色情報を設定する かどうかを選択します。

視野角	2-1 E ~	
光源	A North Annual A	
	BC	
	D50 D55	
	D75 E	
	FI F2	
	F9 F4	
	P6 P7	
	用 円 用C	
	P10 P11 P12	
	FIO PL1 P12	

図17:発光強度測定スペクトル図を読み込む時「色情報を測定する」にチェックを入れる 上図のように、「色情報を測定する」にチェックを入れ、「視野角」と「光源」を 指定します。ファイルの読み込みと同時にこの情報は「色情報」と「CIE 色度図」

に反映されます。これ以外は、吸光度スペクトルを読み込みと同じです。吸光度 測定の「保存した吸光度スペクトルを読み込む」を参照してください。

発光強度測定の個々のスペクトル曲線の削除

一つの発光強度測定の結果は複数のスペクトル曲線により算出されています。そのためいずれの曲線も削除しないでください。もし、いずれかの曲線を削除した場合、結果は正しく計算されません。

発光強度測定スペクトルの印刷と印刷プレビュー

発光強度測定スペクトルの印刷と印刷プレビューの方法はスペクトル測定と同じ です。スペクトル測定の「現在のスペクトル図の印刷と印刷プレビュー」を参照 してください。

12.濃度測定

分光器を使用した濃度測定は、被測定溶液を透過した後のスペクトルと透過する 前のスペクトルを測定し、ランベルト・ベールの法則に従った濃度換算で被測定 溶液の濃度を算出します。透過率測定と同じように、先に光源のスペクトルを測 定し、続いて被測定溶液をセットし被測定溶液を透過した後の光を測定します。 スペクトラスマートでは濃度測定の一連の手順を用意して簡便化しています。

濃度の測定条件設定と測定

「測定」メニューから「濃度」を選択して、「濃度測定を追加…」 画面を開きます。

図1:「測定」メニューから「濃度」を選択

選択し終えたら、以下の画面になります。

濃度測定を追加	—		×
ソースデバイス			
ソースデバイスの選択:			
シリアルナンバー			
OS361AC55009059			
(大へ)	>	キャンセ	JL I

図2:「濃度測定を追加…」-「ソースデバイス」

ソースデバイスの設定

まず「ソースデバイス」画面でソースデバイス(デバイスシリアルナンバーで表示 される)を選択し、「次へ」を押します。

図3:「濃度測定を追加…」-「データ取得パラメータ」

積算時間の設定

続いて、「パラメータ抽出」の画面で積算時間(センサーの露光時間)を設定します。 プログラムではこの画面を開くと自動的に吸光度測定に設定されているデフォル トの積算時間が設定されています。必要に応じて、画面下方のプレビューを参照 しながら、積算時間を調整してください。調整するとプレビューが変化するので、 ピーク値を画面上の推奨ピーク値範囲内に設定してください。例ではピーク値を 40000-60000の範囲内に設定しています。

調整が上手くいかない場合には「自動設定」ボタンを押して、プログラムに自動 的に設定させることもできます。

積算時間を設定し終えたら、必要に応じてスペクトルスキャンのインターバルを 設定します。「スペクトルインターバル→スキャン間隔」ボタンを押して、「スペ クトルスキャンインターバル」の画面上の「ユーザーが設定したスペクトルスキ ャン間隔を有効にする」にチェックを入れて、インターバルを入力します(デフォ ルトは 500 ms)。

スペクトルスキャンインターバル	-	-	×
✓ ユーザーが設定したスペクトル キャン間隔を有効にする	ね		
間幕: 500	ms	~	
ОК			

図4:「スペクトルスキャンインターバル」

スムージング処理の設定

スペクトル曲線に対してスムージング処理を行うことができます。「平均回数」に 平均値を計算するためのスキャン回数を指定します。これにより一回のみのデー タ取得によりも曲線の変動を小さくすることができます。また、「Boxcar 幅」には 移動平均計算に使用する前後のデータ数を指定します。これにより曲線の急な変 化を減らすことができます。Boxcar の幅が大きいほど曲線は滑らかになり、突出 した変化は少なくなります。次の図は、Boxcar の幅を 10(最大)にしたときのス ムージング効果を示しています。例にはスムージングをしていない元の曲線と比 較しています(プレビューの赤い曲線を参照してください)。

図5:「濃度測定を追加…」-スムージング処理の効果

注意:以下の例ではプログラムのデフォルト値を使用しています。つまりスムージング処理(数値スキャン平均回数=1、Boxcar 幅=0)を行っていません。

すべてのデータ取得パラメータが設定し終えたら、[次へ]を押してください。

図6:「濃度測定を追加…」-「ファレンススペクトル」

リファレンススペクトルの設定

被測定物がセットされていない光源スペクトル、つまり「リファレンススペクト ル」を設定します。画面上のカラーパッチをクリックしてリファレンススペクト ルを実際に測定して取得するか、以前にリファレンススペクトルファイルを保存 していた場合は「参照」ボタンを使用して読み込むことができます。本例では実 際の光源をリファレンススペクトルとして読み込んでいます(そのため、被測定 物を先にセットしないでください)。リファレンススペクトルを読み込み終えると、 画面下のプレビューでスペクトルデータを確認することができます。続いて「次 へ」を押してください。

12 20 C X 1000.	N					-		>
「ークスパクトル」								
● 下のグレーパ	976 <i>019</i> 01	.T2-028	クトルを取る	975				
	-			105	1.2			
		平均互動			11			
🗌 Unistr-	(68%)							
and the								
□ 77##15-	ウベクトルを目	使用する						
0 77-11475-5	-72/(91)	は読み込む	8					
						1	2/26/05	
						_	0.0004	*
ターカスペカトル	07141-							_
5-52-55-14	1071/21-				1.51.51		19213	3
5-52-55-14 60100	07141-							1
00100 00100 00100	071/21-		•••••• ••••					
5-52-55-55-55 60100 90100	07121-							
60100 90000 90000	071121-							
60100 60100 60100 60100 60100 60100	07161-							
60100 50100 40100 20100	071421-							
5-52-52-55-74 60100 90100 40100 20100 20100	071121-							
60100 90100 40100 20100 20100	071121-							
5-53-455-74 60100 90000 40000 20100 10100	071121-		· · · · · · · · · · · · · · · · · · ·					
5-53-455-14 60100 90000 40000 20000 10000	071121-							Landard 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Prevents Preven	200	400	601 W	eos avelength ývm	100 801			10 million (10 mil
5-52-55-45-144 60100 	300	400	800 W	eos anciength ým			100	10 million 10

図7:「濃度測定を追加…」-「ダークスペクトル」

ダークスペクトルの設定

リファレンススペクトルの設定が終わったら、センサーに光が当たらない時の測 定値、つまり「ダークスペクトル」を設定します。これより正確なベースライン が設定されます。分光器に接続されている光源を切り離すか、光路を完全に遮蔽 し、画面のグレーパッチを押してダークスペクトルを取得します。一回の取得で なく、複数回の取得で平均値を計算して設定することもできます。プログラムの デフォルトは1回となっています。ここでの例は10回としています。ダークスペ クトルを取得したら、画面の下のプレビューで取得したスペクトルが確認できま す。また、ダークスペクトルの取得中は「Dark Spectrum を取得中…」と表示さ れます。

図 8:「Dark Spectrum を取得中…」の表示

実際ににダークスペクトルを抽出する以外、プログラムのデフォルトダークスペ クトルあるいは以前スペクトラスマートを使用して保存したダークスペクトルフ ァイルを読み込むことも可能です。、プログラムのデフォルトダークスペクトルは テスト用であり、正確ではありませんので注意してください。以下は「デフォル トダークスペクトルを使用する」の選択画面です。

濃度測定を追加		_		Х
ダークスペクトル				
○ 下のグレーパッチをクリックしてダークスペクトルを取得する				
平均回数:	10			
● デフォルトダークペクトルを使用する:				
○ ファイルからダークスペクトルを読み込む:				
			参照	
<戻る	次< >		キャンセル	,

図9:「濃度測定を追加…」-「デフォルトダークスペクトルを使用する」

注意:例では実際に取得したダークスペクトルを使用します(プログラムのデフォルトダークスペクトルではありません)。

ダークスペクトルを設定し終えたら、「次へ」を押してください。

濃	度測定を追加			_			×
表	示設定						
(● 新しいウィンドウで表示	:	ウィンドウ名:	Concentration_0			
(○ 既存のウィンドウを選択	7					
	ウィンドウ名	スペクトルタイプ					
	7 «ካելեշ։	Concentration 0					
	X 01/44.	concentration_o					
	グラフの色:						
			<戻る	ОК	*+	ッシセル	

図10:「濃度測定を追加…」-「表示設定」

表示設定

上の図に示すように、グラフのビューウィンドウ名、スペクトル名、グラフ曲線 の色を指定できます。色を指定するには、画面のカラーパッチをクリックして希 望の色を選択します。

図11:「表示設定」 - 「色の設定」

表示設定し終えた後に、「OK」を押すと、「濃度設定」画面が開きます。被測定溶液の既知の濃度変化曲線、あるいはランベルト・ベールの法則のパラメータを設定します。

長 9 特定波長	〇 波長新聞				
63281 0n 2正データ 意志 現光度を取得	92,H25870	nn		堂 ~	
12			C	14.44	14.99
10 08			次数 □ 原式通過 サンプル数 R二乗	[1 [0	-]
0.4					
0.2			2588	(6B)	
00 60 62	0.4 0.6 Absorbance(DD)	0.8 1.0 1.2			

図12:「濃度測定を追加…」-「設定」-「既知濃度から校正テーブルを作成する」

· 集庆的定	×
現れの濃度から校正データを作用さする。ランベルト・ベールの活用原定	
モル吸光係数(8)	1/ (cm • mol)
光路長:	cm
減長:	n
化合物名	
濃度単位:	
双 用	

図13:「濃度測定を追加…」-「濃度設定」-「ランベルト・ベールの法則設定」

検量線の設定

測定したスペクトルから濃度を算出するための情報を設定します。設定の方法に は濃度既知の試料から検量線を作成する方法と、ランベルト・ベールの法則のパ ラメータを指定する方法があります。以下に検量線取得の方法の例を示します。

- 1. 濃度既知(仮に1とします)の青色溶液を測定ホルダーに置き、「既知濃度から校正テーブルを作成」画面の「波長」で「特定波長」(仮として溶液は青色なので 500 nm とします)か「波長範囲」を選択します。
- 2. 続いて、画面の「校正データ」の「濃度」に1を入力して「吸光度を取得」 ボタン押し、吸光度を測定します。
- 3. 「リストに追加」ボタンを押します。この吸光度数値を右側のリストに追加します。

- 続いて、既知濃度仮に2の青色溶液を測定ホルダー位置に置きます。そして「濃度」に2を入力して「吸光度を取得」ボタンを押してこの濃度の吸光度を測定します。既知濃度の溶液で同様の操作を繰り返します。
- 5. 「リストに追加」ボタンを押すと、吸光度の数値を右側のリストに追加されます。

この時、回帰曲線のパラメータが表示されます。

t長 ● 特定波長 49981 。	し、小田(1955) 〇 波風(1975)	5277711-73-740 1026.83	nn n				
注データ 専攻 見光度を取得	3 2.910551E-081	UXHCight R/Se	化合物名 濃度單位		@.+.:	R 🗸	
E				••••	8	潮度	持花
				9,756 1,997 2,918	505E-002 398E-001 651E-001	2	1.633417E-007 -3.445014E-007 1.811597E-002
3				25日初 一項 リシブ 日二月	ldiðið Næt H	1 ~ 8 9.991991E-0	
1							
1				次鼓	6	¥ét	
0.0	0.1 0.3			0.5	1	971146E-002 028419E+001	
	AL	isorbance(OD)					

図14:「濃度測定を追加…」-「濃度設定」で検量線を設定

濃度曲線の設定が終了したら、画面の一番下の「テーブルの保存」ボタンでデー タを保存します。保存したデータは「テーブルを読込み」ボタンで読み込むこと ができます。設定し終えたら、「適用」ボタンを押してください。設定が適用され ると、濃度曲線が表示されます。

図15:新しく作成した濃度測定図

上の例は、測定溶液をセットしていてないため、ノイズのみが表示されています。

被測定溶液を置き濃度測定を開始

続いて、被測定溶液を置き濃度を測定します。例は以前作成した青色溶液の検量 線を使用しています。

図16:被測定溶液の濃度測定図

スペクトラスマートの濃度測定結果は濃度変化のストリップチャートとして表示 されます。上図はおよそ1分間の結果(赤色枠線部分)を示します。左側の低い部分 は開始の時の被測定溶液のない状態です。曲線が右側の端に到達すると、グラフ 曲線は左へスクロールします。図中で見られる被測定溶液の濃度はおよそ 2.0 前後 で変動しています。変動が大きい場合は「スムージング設定」を開き、スムージ ング処理を行います。

スムージング設定		_		×				
-DWTノイズフィルタ	-							
🗹 フィルターを有効	幼にする							
-Savitzky-Golay	フィルターーーー							
🔄 フィルターを有効	幼にする							
多項式次数: 2 🗸 🗸								
モード: 基準	曲線と測定曲線	泉		~				
-FFT フィルター								
□ フィルターを有効にする								
しきい値:	0.01	~						
移動平均								
□ 移動平均を有効にする 1 ~								
カルマンフィルター								
🗌 カルマンフィルタ	マーを有効にする							
ーハイパスフィルター								
🗌 フィルターを有効	幼にする	0						
ОК								

図17:「スムージング設定」を開く

スムージング処理を実施すると下図の赤枠で示したように変動が小さくなります。

ユーザーズガイド ソフトウェア編

図18:スムージング処理を適用した結果

抽出したスペクトル曲線を調べる

濃度曲線は複数のスペクトルから算出されています。スペクトラスマートでは元 のスペクトル曲線を調べる機能を用意しています。ツールバーの「抽出したスペ クトル」のボタンを押すことにより、この機能を有効にすることができます。

図19:濃度測定の「抽出したスペクトル」を開く

グラフツールバーボタン

濃度測定グラフのツールバーボタンとストリップチャートのツールバーは基本的 に同じです。ストリップチャートの「グラフツールバーボタン」を参照してくだ さい。

濃度測定関連ツールバーボタン

ストリップチャートと同じツールバーボタンを除き、濃度測定には「濃度設定」 専用のボタンがあります。

図 20:「濃度設定」ボタン

この濃度設定ボタンで以前作成した「既知濃度から校正テーブルを作成」と「ラ ンベルト・ベールの法則設定」画面を開きます。

現在の濃度測定を保存

濃度測定スペクトルの保存手順は吸光度スペクトルと同じです。吸光度測定の「現 在の吸光度測定を保存」を参照してください。

保存した濃度測定スペクトルを読み込む

以前保存した濃度測定スペクトルの読込方法は吸光度スペクトルと同じです。吸 光度測定の「保存した吸光度スペクトルを読み込む」を参照してください。

濃度測定の個々のスペクトル曲線を削除

一つの濃度測定の結果は複数のスペクトル曲線により算出されています。そのためいずれの曲線も削除しないでください。もし、いずれかの曲線を削除した場合、結果は正しく計算されません。

濃度測定の印刷と印刷プレビュー

濃度測定の印刷と印刷プレビューの方法はスペクトル測定と同じです。スペクト ル測定の「現在のスペクトル図の印刷と印刷プレビュー」を参照してください。

13.トリガーモードの設定

分光器は「トリガーモード」に対応しています。トリガーモードにより、外部1/0 信号やスペクトル強度によって分光器のデータの取得を制御します。このモード では、同時に複数の分光器をトリガーすることができます。個々の分光器に対し て API を介したコンピュータソフトウェアの制御ではなく、複数の分光器への指 示でデータを取り込むことができます。コンピューターの性能に左右されること なく、同時に複数の分光器からのデータ取得を開始させることができます。

トリガーモードの起動(I/O 信号)

トリガーモードを使用するにはトリガーモードに設定する必要があります。まず 例としてスペクトル測定を作成します。

図 1:まずスペクトル測定を作成

画面左側の「スペクトルー覧」で、現在の取得モードが確認できます。通常は下 図のように「トリガーオフ」となっています。

図 2:「スペクトル一覧」中の取得モードは「トリガーオフ」

続いて、「設定」メニューから「トリガー設定」を選択します。

スペクトルー覧			φ×	Spectru	um_0	
Spectrum_0	15 *		ms	トリガー設定(1)		
	10 10	122225	アプリケーションの設定(A)			
ファイル(F)	表示(V)		測定(M)	設定(S)	ウィンドウ(W)	ヘルプ(H)

図 3:「設定」メニューから「トリガー設定」を選択

続いて、「トリガー設定」画面が表示されます。

図 4:トリガーを設定する (I/O 信号)

続いて、以下の手順に従って設定します。

- 1. トリガーモードに設定したいスペクトル測定(ここでの例は「Spectrum_0」) にチェックを入れます。
- 2. トリガーモードを選択します(例は「SW 連続トリガー」)。
- 3. 「有効」ボタンを押してスペクトル測定をトリガーモードします。
- 4. 「OK」ボタンを押して画面を終了します。

これにより下図のようにスペクトル取得モードはトリガーモードになります。

図 5:スペクトル取得モードがトリガーモードであることを確認

この時、スペクトルデータの取得が止まり、外部の I/O 信号トリガーからのデー タ取得を待っている状態になります。

トリガーモードの起動(スペクトル強度)

このモードを用いると、設定したスペクトル強度によって、測定の Start/Stop 制 御が可能になります。設定したスペクトル強度をある一点で上回ると測定が開始 され、すべての計測点で設定強度を下回ると測定が停止されます。

「トリガー設定」画面から、以下の手順に従って設定します。

- 1. トリガーモードに設定したいスペクトル測定(ここでの例は「Spectrum_0」) にチェックを入れます。
- 2. 「SW インテンシティトリガー」にチェックを入れます。
- 3. 「インテンシティ」にスペクトル強度を設定します(例は 50000)。
- 4. 「有効」ボタンを押してスペクトル測定をトリガーモードします。

5. |OK」ボタンを押して画面を終了します。 これによりスペクトル取得モードはインテンシティトリガーモードになります。 また「生データ」を有効にすることで、補正やスムージング処理がなされない生 データがトリガーに反映されます。

図 6:トリガーを設定する(スペクトル強度)

トリガーモードを閉じる

トリガーモードを閉じる場合は、「設定」メニューから「トリガー設定」を選択し、 「トリガー設定」の画面で下の手順に従って実行します。

- 1. 閉じたいトリガーモードのスペクトル測定にチェックを入れます(例は 「Spectrum_0」)。
- 2. トリガーモードで「トリガーオフ」選択します。
- 3. 「有効」 ボタンを押して、 取得モードからトリガーオフモードへ戻します。
- 4. 「OK」ボタンを押して画面を終了します。

図 7:トリガーモードを閉じる

これにより、「スペクトル一覧」からスペクトルの取得モードが「トリガーオフ」 へ戻ったことが確認できます。

図 8:取得モードは「トリガーオフ」となる

14.時系列測定(全波長の経時的測定)

スペクトラスマートには測定値の変化を一定期間にわたってモニターする「時系 列測定」機能が用意されています。スペクトラスマートウィンドウの右端縦の「時 系列抽出」ボタンの上にマウスカーソルを移動すると、「時系列測定」画面が開き ます。

図1:「時系列測定」ボタンと画面

マウスを動かすと、画面は自動的に消えます。画像を表示したままにするには、 画面の右上隅にあるピンアイコンをクリックして、画面を固定します。

				_
時系列》	則定		-= ×	6
: 💿 22	禄 🔘 停止 🔚 …に保存	spc 🔹		時
Destina	tion: C:¥Users¥BAS¥Desk	top		糸
選択	スペクトル名	保存名	備考	圓
	Spectrum_0	Spectrum_0	None	
				色
				報
				0.00

図2:「時系列測定」画面ピンアイコンの場所

ピンアイコンをクリックすると、大きさが調整された「時系列測定」画面が表示 されます。

図3:「時系列測定」画面でピンアイコンをクリックして表示された画面

連続変化の開始

上の図にはスペクトル測定の時系列測定の例が表示されています。

保存のフォルダーを指定

データを保存するフォルダーを指定します。デフォルトはデスクトップとなって います。必要に応じてこの画面の上部の「…に保存」ボタンで変更することができ ます。

開始時刻の指定

続いて、開始時刻を開始前待機時間で設定します。デフォルトは「記録」ボタン を押した後の1ミリ秒となっています。実質、「記録」ボタンを押すと同時に記録 が開始されます。ここでは決して0を設定しないでください。その場合はエラー が発生します。

「記録開始」ボタンを押して、直ちに記録を開始したい場合には、「記録開始」に チェックを入れてください。

取得間隔を指定

連続取得の間隔を設定することができます。デフォルトでは 500 ms となっていま

す。必要に応じて変更することもできます。あるいは「ソースとの同期」を選択 して、元のスペクトルの取得間隔と同じにすることもできます。

停止時刻を指定

続いて、停止時刻を指定します。デフォルトは画面上部の「停止」ボタンを押し て停止するまでとなっています。あるいは停止するまでの時間を設定します。

保存するスペクトルの指定

最後に保存するスペクトルを指定します。デフォルトは現在測定したすべてのス ペクトル曲線となっています。例のように、スペクトル測定では一本の曲線が保 存されますが、吸光度、透過率、反射率、発光強度、濃度の測定では一つの結果 に対して4本の曲線があり、どれを保存するか選択することができます。この画 面の上部のリストで保存したいスペクトルにチェックを入れます。

「データ取得間隔ごとにファイルを作成する」にチェックが入っていない場合は、 時系列測定専用のファイル形式で保存され(拡張子は spc)、「ファイル」→「時系 列測定ファイルを開く」で再生することができます。一方、「データ取得間隔ごと にファイルを作成する」にチェックが入っていない場合は、データ取得間隔ごと にそれぞれの測定モードに応じたファイル形式で保存され(拡張子は sps)、「ファ イル」→「スペクトルファイルを開く」で開くことができます。

記録開始

上記のオプションを設定した後、「新規データのみ記録」にチェックが入っている 場合、画面上部の「記録」ボタン(赤い点)を押すと、次のようなプロンプトメ ッセージが表示されます。「OK」を押すと記録がスタートします。

図 4:複数の測定を行いながら、「新規データのみ記録」を有効にすると、「各分光器に対して1つの測定 だけ実行してください。データの一部が失われる恐れがあります。」のメッセージが表示される

記録停止

記録の時刻を指定すると、設定した時間に自動的に停止します。途中で記録を停止したい場合は画面上部の「停止」ボタンを押して記録を停止させます。

記録した連続変化の読み込みと再生

以前「データ取得間隔ごとにファイルを作成する」にチェックを入れずに保存し たデータは、「ファイル」メニューで「時系列測定ファイルを開く」で読み込むこ とができます。

図5:「ファイル」メニューから「時系列測定ファイルを開く」を選択

「開く」画面を開き、以前保存したファイルを指定して「開く」を押します。

2 mk				7
	~ 0	Salebath		_j0
目間 * 新L1-7x11ダー			ei •	0
 DreDies PC \$0.775±71+ \$720±71+ \$20±71+ \$21±30+7 \$21±30+7 \$80±00488 (0) \$149_\$8000488 (0) \$149_\$800488 (0) <li< td=""><td></td><td></td><td></td><td></td></li<>				
マ ファイは第回日 Spectrum Time Sequencespe		SPC files [1:cpr]		÷
		-	100	

図6:「開く」で以前保存したファイルを選択

ファイルを開くと、再生画面が表示されます。

図7:連続取得ファイルの再生画面

上の図に示すように、画面の下には「早戻し」、「再生」、「一時停止」、「早送り」(赤い枠線がマークした場所)。操作は、一般的なビデオ再生と同じです。この再生の 方法で、測定値の連続的な変化を観察することができます。ファイルは読み込ま

れると「停止」を押すまで繰り返し再生されます。上の図に示すように、画面の 下には「早戻し」、「再生」、「一時停止」、「早送り」(赤い枠線がマークした場所)。 操作は、一般的なビデオ再生と同じです。この再生の方法で、測定値の連続的な 変化を観察することができます。ファイルは読み込まれると「停止」を押すまで 繰り返し再生されます。

15.アプリケーションの設定

スペクトラスマートでは、測定図波長表示範囲、グラフ背景、ウィンドウ背景、 スムージング処理方式等のデフォルトをカスタマイズできます。

これらの設定を変更するには、「設定」メニューから「アプリケーションの設定」 を選択します。

図 1:「設定」メニューから「アプリケーションの設定」を選択

選択し終えたら「アプリケーションの設定」画面を開きます。

アプリケーションの設定			>
デフォルト設定 供存	グラブ スムージング	白信時	
創定	スペクトル	· +	
X222世紀長を表示:	200	hm	
X籍総点を表示:	1025	nm	
Y 融始后者表示:	٥	count	
Y軸线点を表示:	65535	count	
短篇诗题	10	* ms	
平均	1	~	
Boxcar:	٥	Ŷ	
☑ スペクトルデータ □ デフォルトスペク	が65535を踏えたときにメ トルモードを使用した端室	クセージを表示する 校正	
注:ここではアプリケー ため、ネページにおけ クにのみ運用されます	・ションのデフォルト値を(・る変更は変更後に表示され	変用している vるウィンド	
Ø DneShat₹- K≗	有効にする		
	¥ →•27%	18 B	
	-n	No.T	

図 2:「アプリケーションの設定」の「デフォルト設定」画面

デフォルト

「デフォルト設定」でプログラムのデフォルトの変更ができます。

表示範囲の開始点と終了点

「アプリケーションの設定」の「デフォルト設定」画面では、測定パネルのX軸の「表示範囲の開始点」と「表示範囲の終了点」を指定できます。

平均

ここでは、デフォルトの数値スキャン平均回数を設定することができます。これ によりノイズの影響を軽減します。

Boxcar

ここではスムージング処理に使用する Boxcar のデフォルトを変更します。範囲は 0から10で、数字が大きければ大きなスムーズ効果が得られます。デフォルトは 0で、スムージング処理しない設定となっています。

スペクトル数値が 65535 を超えた時の表示メッセージ

分光器のスペクトル数値の最高値は 65535 です。そのため抽出したスペクトル曲線の「ピーク値」がこの数値を超えると、スペクトル曲線は正確になりません。 もしこの値を超えた場合、スペクトル図上に下図のように警告メッセージが表示 されます。

ユーザーズガイド ソフトウェア編

図 3:スペクトル数値が上限を超えた場合の警告メッセージ

保存

「保存」で測定データの保存の方法を設定することができます。

マオルト設定	定 保存	グラフ ス	ムージング 色情報
波長範囲			
□ 有効化			
始点:	200		nm
終点:	1025		nm
波長分解龍			
□ 有効化			
波長分解離		0.01	~
ファイルー			Strip Chart
🗹 *.sps			⊠ *.spt
t.csv			t.csv
🗌 *.txt			□ アーカイブ時にデータを更新する

図 4:「アプリケーションの設定」の「保存」画面

波長範囲

「有効化」にチェックを入れて始点と終点を変更することができます。「有効化」 にチェックがない場合は、装置固有の波長範囲 200~1025 nm が設定されます。

波長分解能

「有効化」にチェックを入れて、0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 5, 10 の中から波長分解能を指定します。「有効化」にチェックがない場合は、0.01 が設定されます。

ファイル

スペクトルデータ枠で右クリックして「すべてのスペクトルを…に保存する」を 選択した場合(「6. スペクトル測定」→「現在のスペクトル図を保存」→「現在の ウィンドウにあるすべてのスペクトルを保存する」を参照)と、ストリップチャー トで記録設定ボタンの「レコードを保存」を使用する場合(「7. ストリップチャー ト(特定波長での経時的測定)」→「記録設定ボタン」を参照)のファイル形式を一 つあるいは複数選択できます。

グラフ

この画面でグラフ表示の調整ができます。

線幅

この画面で曲線の線幅の調整ができます。

ビューウィンドウとグラフ背景

この2項目の設定で測定図ビューウィンドウの背景モードと色、グラフの背景モードと色の調整ができます。モードには「無し」、「グラデーション」、「単色」が あります。

アプリケーションの設定 >	<
デフォルト設定 保存 グラフ スムージング 色情報	
線幅: 1 ~	
ウィンドウの背景: グラデーション 🗸	
グラフの背景: <mark>グラデーション</mark> ✓ 無し	
✓ 可視スペクトルの表示 単色	
OK キャンセル 適用	

図 5:「アプリケーションの設定」-「グラフ」

下図では「ビューウィンドウの背景」と「グラフの背景」の例を示しています。 それぞれ、灰色の単色とライトブルーのグラデーションの設定結果です。

No. 41 Second	AX besteril	COLUMN A NUMBER		1				+
Strate States	Contract of the	- CAR IN HERE	COLUMN TWO IN THE	P		A state		
-HTERE - Trace (k. 1	70000	- 24012 0		TTR-STORE				
-RELAC AN -RELAC NO	10000			1711.1 MB. MR. 1	TTTLACTOR, BR			
41465-210915-015					B			
ニーモード: 阿ガーオフ	68000			11211000	148	100	Contra de Calendaria	
				******	TRAFFICATION OF	-	R.com	
				(1181-111-int	÷ .		Beerla	
	50900			a second			all the	
							and a second sec	
	~ 40000						and a second	
	1 total						Below I	
the Advances	44. 8						E COLUMN COLUMN	
ALCONO.	\$ 30000						Parent -	
Adding your 201102	100						Lines.	
Rejenser mane 100	Contraction of the			10 m			Dam.	
	20000	~		and the second s			BTHE .	
		17 3	he	104	ti parale 10	1.1	Page 1	
	10000	1 mm						
	1000					19.11	200411400	
	in the second se					2984	JAIN FYTRIG	
	0	and the standard and a	advant of the second	the state of the s	I T T T T T T	10.0	ALL DESIGN	
		Anna Anna	ros	0 000 0	000 1000	1413.64	and interest	
	200	. 300 400	000 800 n	10 500 0	00 1000	10.000	Concentration and	

図 6:「アプリケーションの設定」の「グラフ」の設定例

可視スペクトルの表示

可視スペクトルの表示にチェックを入れと、スペクトル上で可視光範囲をカラー で明示することができます。

注意:これらのグラフ設定は「適用」を押すとリアルタイムに効果が確認できま す。

スムージング処理

この画面では、デフォルトでスムージング処理機能を有効にするかどうかを設定 できます。

アプリケーションの設定	×			
デフォルト設定 保存 グラフ スムージング 色情報				
DWT/イズフィルター				
☑ フィルターを有効にする				
Savitzky-Golay フィルター	—			
□ フィルターを有効にする				
スムージング: 11点 ~				
多項式階数: 2 ~				
モード: 基準曲線と測定曲線 〜				
FFT フィルター	=			
□ フィルターを有効にする				
しきい値: 0.01 ~				
移動平均	Ξ			
□ 移動平均を有効にする 1 ~				
カルマンフィルター				
□ フィルターを有効にする				
□ フィルターを有効にする 0				
OK キャンセル 適用				

図 7:「アプリケーションの設定」の「スムージング設定」画面

DWT ノイズフィルター

DWT(離散ウェーブレット変換:Discrete Wavelet Transform)ノイズフィルターを 有効にするには、「フィルターを有効にする」にチェックを入れます。

Savitzky-Golay フィルター

Savitzky-Golay フィルターを有効にするには、「フィルターを有効にする」にチェ ックを入れ、「スムージング程度」とスムージング「モード」を設定します。「モ ード」では「基準曲線」、「基準曲線と測定曲線」、「測定曲線」を選択します。

FFT フィルター

高速フーリエ変換(Fast Fourier Transform、FFT)を有効にするには、「フィルター を有効にする」にチェックを入れ、「しきい値」を設定します。

移動平均

移動平均アルゴリズムを有効にするには、「移動平均を有効にする」にチェックを 入れ、平均に使用するデータ数を指定します。

カルマンフィルター

カルマンフィルター(Kalman Filter)は、「フィルターを有効にする」にチェックを 入れることで有効になります。

ハイパスフィルター

ハイパスフィルターは、「フィルターを有効にする」にチェックを入れることで有効になります。

注意:スムージングの設定を変更した場合、「適用」を押せば、リアルタイムに効 果が確認できます。

色情報

「色情報」ウィンドウで表示するフィールドを設定します

アプリケー	ションの設定	\times
デフォル	レト設定 保存 グラフ スムージング 色情報	
	すべて選択	
選択	項目	^
	XYZ	
	CIE1931_xyz	
	CIE1976_LabCh	
	CIE1976_uv	
	Hunter_LabCh	
	сст	
	Duv	
	DominantWavelength	
	Yellowness_Index	
	CIE_whiteness	
\checkmark	CIE_Tint	
	Purity	
	UV_index	
	Illuminant	
	Radiant	~
L		
	OK キャンセル 適用	

図 8:「アプリケーションの設定」の「色情報」画面

16.その他の機能

言語

プログラムインタフェースで使用する言語を切り換えることができます。「ファイル」メニューから「言語」を選択し、言語を選択します。

図1:「ファイル」メニューから「言語」を選択

選択し終えるとプログラム画面は対応の言語に切り換わります。例は言語を英語 に切り換えています。

図2:言語を「英語」に切り換えた

フォント

プログラムインタフェースのフォントサイズを調整できます。次の図に示すよう に、「表示」メニューから「フォント」を選択します。

図3:「表示」メニューから「フォント」を選択

必要に応じてフォントサイズを選択してください。

ウィンドウのデフォルトレイアウト

測定ウィンドウを複数に開いたり、ウィンドウの構成を調整した後に、元の配置 に戻したい場合は、「ウィンドウ」メニューから「デフォルトレイアウト」を選択 します。

図4:「ウィンドウ」メニューから「デフォルトレイアウト」を選択

下図のようにプログラムをデフォルトのレイアウトに戻すことができます。

図5:デフォルトのウィンドウ配置に戻す

17.お問い合わせ

以上がスペクトラスマートのユーザーズガイド ソフトウェア編になります。スペ クトラスマートについて不明な点や詳しい説明が必要な場合は、以下の連絡先に お問い合わせください。

本社 〒 131-0033 東京都墨田区向島1丁目28番12号 東京営業所 TEL: 03-3624-0331 FAX: 03-3624-3387 大阪営業所 TEL: 06-6308-1867 FAX: 06-6308-6890 E-mail: sales@bas.co.jp URL: https://www.bas.co.jp

付録 A:分光器補正機能説明

🖲 暗電流補正

分光器のシステム電子部品 (メイン基板と CCD)には受光していなくても電流が 流れています。これは暗電流と呼ばれるもので、分光器のアナログ・デジタル変 換(ADC)を経て、強度測定値にカウントされ、ベースラインに影響します。工場出 荷補正時に ADC を通る暗電流は約 1000 に設定されています。暗電流は実際に測 定された光強度ではないため、実際の測定では実際の暗電流を差し引く必要があ ります。暗電流は温度により変化します。分光器は工場出荷前にこの暗電流補正 を実施し、パラメータを分光器に保存しています。暗電流補正を有効にすると、 暗電流が自動的に測定値から減算されます。以下の二つの図は暗電流補正を起動 している場合と起動していない場合を示しています。

図1:暗電流補正をしていない状態

図2:暗電流補正を起動

暗電流補正を起動するには、上部のツールバーの「E:暗電流補正」ボタンを押して チェックを入れます。

図3:「暗電流補正」ボタン

分光器の CCD の感度は強度に対して直線的ではありません。個々の CCD センサ ーによっても、感度は同じではありません。そのため、各々の分光器は工場出荷 前に直線性補正が実施されており、個々の分光器に直線性補正テーブルが保存さ れています。分光器は16 ビット A / D コンバータ(ADC)を採用しており、出力 範囲は 0~65535 に補正されています。スペクトラスマートが直線性補正機能を起 動していると、各のピクセル(pixel)の値は、直線性補正テーブルに従って修正され ます。

図5:直線性補正を起動

直線性補正を起動するには、ツールバー上部の「L:直線性補正」 ボタンを押してチ ェックを入れます。

図 6:「直線性補正」ボタン

🖉 強度補正

分光器の CCD センサーは波長に対しての応答も異なります。そのため分光器は工 場出荷する前に、補正テーブルを分光器に保存して強度を補正しています。強度 修正には標準光源を使用しています。また、強度補正(350~900 nm)は SMA905 コネクター端でも実施しています。ユーザーで独自に光源強度測定を行うには、 独自にシステムを構築する必要があります。

図8:強度補正を起動

強度補正を起動するには、ツールバー上部の「I:強度補正」ボタンを押してチェックを入れます。

図9:「強度補正」ボタン

