ZAHNER ZENNIUM

electrochemical workstation

Specifications

Overall Ban	and the second		D S
	dwidth		DC - 5 MHz
ADC Resolu	tion		18 bit
Harmonic R	leject		> 60 dB @ 1/2 full scale
Potentiostat	Modes		Potentiostatic, galvano
Cell Conne	ction		2-, 3-, 4-terminal Kelvin
Chassis			ground
Extension SI	ots		4
PC Interface	e		USB 1.1 / 2.0
Weight			12 kg
Accessories			II-buffer 2 cell cable se
Power supp	lv		230/115 V 50/60 Hz
Ambient ter	mperature		+10° C to +30° C
Ambient Hu	imidity		< 60% without derating
Frequen	cy Generator &	Analyzer	
Frequency	Range		10 μ Hz to 4 MHz
Accuracy			< 0.0025%
Resolution			0.0025%, 10.000 steps
Output P	otentiostatic		
Controlled `	Voltage	Pot	±4 V
	-	U-buffer	±10 V
Resolution		Pot	125 μV
		U-buffer	320 μV
Accuracy		Pot	$\pm 250 \mu\text{V}$
Tenere	e Céaleille	U-buffer	± I mV
	e siddillity	Dat	Definer 20 μ V/°C
Complianc	e voliage		±14 V +120 V
	de	CVB12U	± 120 v 1 mV to 1 V
Bandwidth	46		4 MHz @ 33 O load
IR Compen	sation	Method	Auto AC Impedance Te
compon		Ranae	0 to 10 MΩ
		Resolution	0.012%
Small Signa	Il Rise Time		250 ns to 200 μ s in 5 st
Slew Rate			15 MV/s
Phase Shift			10 deg @ 250 kHz
Output @	Salvanostatic		
Output C	Calvanostatic		±2.5 A
Output C Controlled C Current Rar	Current	Pot	±2.5 A ±100 nA to ±2.5 A in 8
Controlled Current Ran	Calvanostatic current nge	Pot HiZ	±2.5 A ±100 nA to ±2.5 A in 8 ±1 nA to ±0.5 A in 10 s
Output C Controlled C Current Ran Min. Resolut	Contraction	Pot HiZ	±2.5 A ±100 nA to ±2.5 A in 8 ±1 nA to ±0.5 A in 10 s 0.025%
Controlled Current Rar Min. Resolut	Galvanostatic current nge tion	Pot HiZ	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \text{ s}$ 0.025% $0.1\% @ > 2 \ \mu\text{A to 100}$
Output C Controlled a Current Ran Min. Resolut Accuracy	Galvanostatic current nge tion	Pot HiZ	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10}$ 0.025% $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or > 10}$
Dutput G Controlled G Current Rar Min. Resolut Accuracy	Galvanostatic current nge tion	Pot HiZ	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \pm 0.025\%$ $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10$
Output C Controlled C Current Rar Min. Resolut Accuracy	Courrent age tion	Pot HiZ	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \pm 0.025\%$ $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10^{\circ}$ $\pm 1, \pm 2, \pm 4 \text{ V}$
Output C Controlled C Current Rar Min. Resolut Accuracy Input Potential Ra	Courrent age tion	Pot HiZ Pot U-buffer	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \pm 0.025\%$ $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10$ $\pm 1, \pm 2, \pm 4 \text{ V}$ $\pm 4, \pm 10 \text{ V}$
Output C Controlled C Current Rar Min. Resolut Accuracy nput Potential Re Potential Re	Courrent age tion	Pot HiZ Pot U-buffer	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \pm 0.025\%$ $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10$ $\pm 1, \pm 2, \pm 4 \text{ V}$ $\pm 4, \pm 10 \text{ V}$ 256.000 steps per range
Output C Controlled C Current Rar Min. Resolut Accuracy Input Potential Ra Potential Re Offset Volta	Contrant Static current inge tion inges issolution ge	Pot HiZ Pot U-buffer	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \pm 0.025\%$ $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A to 100}$ $\pm 1, \pm 2, \pm 4 \ \text{V}$ $\pm 4, \pm 10 \ \text{V}$ 256.000 steps per range $< 100 \ \mu\text{V}$
Output C Controlled d Current Rar Min. Resolut Accuracy Input Potential Ra Offset Volta Offset Temp	Contraction Contr	Pot HiZ Pot U-buffer	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \pm 0.025\%$ $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10$ $\pm 1, \pm 2, \pm 4 \ \text{V}$ $\pm 4, \pm 10 \ \text{V}$ 256.000 steps per rang $< 100 \ \mu\text{V}$ $< 20 \ \mu\text{V}^{\circ}\text{C}$
Output C Controlled (Current Rar Min. Resolut Accuracy Input Potential Ra Potential Re Offset Volta Offset Temp Current Rar	Contrant Contraction Contract Contract	Pot HiZ Pot U-buffer Pot	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \pm 0.025\%$ $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10$ $\pm 1, \pm 2, \pm 4 \text{ V}$ $\pm 4, \pm 10 \text{ V}$ 256.000 steps per range $< 100 \ \mu\text{V}$ $< 20 \ \mu\text{V}/^{2}\text{C}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 2}$
Output C Controlled C Current Rar Min. Resolut Accuracy Input Potential Ra Offset Voltan Offset Voltan Offset Temp Current Rar Accuracy	Contrant Stability nge	Pot Hiz Pot U-buffer Pot Hiz	$\begin{array}{l} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \ \mu\text{A to 100} \\ 1\% @ < 2 \ \mu\text{A to 100} \\ 1\% @ < 2 \ \mu\text{A or > 10} \\ \hline \\ \pm 1, \ \pm 2, \ \pm 4 \ \text{V} \\ \pm 4, \ \pm 10 \ \text{V} \\ 256.000 \text{ steps per range} \\ < 100 \ \mu\text{V} \\ < 20 \ \mu\text{V}^{\circ}\text{C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 2} \\ \pm 10 \text{ nA to } \pm 0.5 \text{ A in 26} \\ 0.05\% @ > 2 \ \mu\text{A to 100} \\ \end{array}$
Dutput G Controlled o Current Rar Min. Resolut Accuracy nput Potential Ra Offset Volta Offset Temp Current Rar Accuracy	Contrant Stability	Pot Hiz Pot U-buffer Hiz	$\begin{array}{c} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \ \mu\text{A to 100} \\ 1\% @ < 2 \ \mu\text{A or > 10} \\ \hline \\ \pm 1, \ \pm 2, \ \pm 4 \text{ V} \\ \pm 4, \ \pm 10 \text{ V} \\ 256.000 \text{ steps per range} \\ < 100 \ \mu\text{V} \\ < 20 \ \mu\text{V/C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 2} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 26} \\ \hline \\ 0.05\% @ > 2 \ \mu\text{A to 100} \\ 0.5\% @ < 2 \ \mu\text{A or > 10} \\ \hline \end{array}$
Output C Controlled o Current Rar Min. Resolut Accuracy Input Potential Ra Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C	Current Current Contraction	Pot Hiz Pot U-buffer Hiz Pot	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10}$ 0.025% $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10$ $\pm 1, \pm 2, \pm 4 \text{ V}$ $\pm 4, \pm 10 \text{ V}$ 256.000 steps per rang $< 100 \ \mu\text{V}$ $< 20 \ \mu\text{V}^{\circ}\text{C}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 3}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 26 s}$ $0.05\% @ > 2 \ \mu\text{A to 100}$ $0.5\% @ < 2 \ \mu\text{A or } > 10 \text{ pA}$ $12 \ \text{fA}$
Output C Controlled (Current Rar Min. Resolut Accuracy Input Potential Ra Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C	Contrant Contraction Contract Contract	Pot HiZ Pot U-buffer Pot HiZ Pot	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10}$ 0.025% $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10$ $\pm 1, \pm 2, \pm 4 \ \text{V}$ $\pm 4, \pm 10 \ \text{V}$ 256.000 steps per rang $< 100 \ \mu\text{V}$ $< 20 \ \mu\text{V}^{\circ}\text{C}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 3}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 26}$ $0.05\% @ > 2 \ \mu\text{A or } > 10$ $0.5\% @ < 2 \ \mu\text{A or } > 10$ $10 \ \mu\text{A}$ $12 \ \text{fA}$ $2.5 \ \mu\text{A}$
Output C Controlled a Current Rar Min. Resolut Accuracy Potential Ra Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res	Contrant Contraction Contract Contract	Pot HiZ Pot U-buffer Pot HiZ Pot HiZ Pot HiZ	$\begin{array}{l} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \ \mu\text{A to 100} \\ 1\% @ < 2 \ \mu\text{A or } > 10 \\ \hline \\ \pm 1, \ \pm 2, \ \pm 4 \ \text{V} \\ \pm 4, \ \pm 10 \ \text{V} \\ 256.000 \text{ steps per range} \\ < 100 \ \mu\text{V} \\ < 20 \ \mu\text{V/}^{\circ}\text{C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 3} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 26} \\ \hline \\ 0.05\% @ > 2 \ \mu\text{A or } > 10 \\ 0.5\% @ < 2 \ \mu\text{A or } > 10 \\ \hline \\ 10 \ \mu\text{A} \\ 12 \ \text{fA} \\ 2.5 \ p\text{A} \\ 25 \ \text{fA} \end{array}$
Output C Controlled (Current Rar Min. Resolut Accuracy Input Potential Re Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res	Contrant Stability Second Sta	Pot HiZ Pot U-buffer Pot HiZ Pot HiZ Pot	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10}$ 0.025% $0.1\% @ > 2 \ \mu\text{A to 100}$ $1\% @ < 2 \ \mu\text{A or } > 10$ $\pm 1, \pm 2, \pm 4 \ \text{V}$ $\pm 4, \pm 10 \ \text{V}$ $256.000 \text{ steps per rangest < 100 \ \mu\text{V}< 20 \ \mu\text{V}^{\circ}\text{C}\pm 100 \text{ nA to } \pm 2.5 \text{ A in 3} \pm 10 \ \text{A to } \pm 0.5 \text{ A in 26} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 3} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 3} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 3} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 3} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 3} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 3} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 3} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 5} \pm 100 \ \text{nA to } \pm 2.5 \text{ A in 6} \pm 100 \ \text{nA to } \pm 2.5 \text{ pA to 100}10 \ \text{pA}12 \ \text{tA}2.5 \ \text{pA}10 \ \mu + 5 \ \text{nE (typic)}$
Dutput G Controlled o Current Rar Min. Resolut Accuracy Potential Re Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res	Current anges esolution ge berature Stability age	Pot HiZ Pot U-buffer Pot HiZ Pot HiZ Pot HiZ Pot	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10}$ 0.025% $0.1\% @ > 2 \mu \text{ A to 100}$ $1\% @ < 2 \mu \text{ A or > 10}$ $\pm 1, \pm 2, \pm 4 \text{ V}$ $\pm 4, \pm 10 \text{ V}$ 256.000 steps per rangestication of the state of
Output C Controlled o Current Rar Min. Resolut Accuracy Potential Ra Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res Input Imped	Current anges esolution ge berature Stability nge Current colution dance e Range	Pot HiZ Pot U-buffer Pot HiZ Pot HiZ Pot HiZ Pot HiZ Pot	$\pm 2.5 \text{ A}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 8}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 10}$ 0.025% $0.1\% @ > 2 \mu \text{A to 100}$ $1\% @ < 2 \mu \text{A or > 10}$ $\pm 1, \pm 2, \pm 4 \text{ V}$ $\pm 4, \pm 10 \text{ V}$ 256.000 steps per range $< 100 \mu \text{V}$ $< 20 \mu \text{V}^{/2}\text{C}$ $\pm 100 \text{ nA to } \pm 2.5 \text{ A in 3}$ $\pm 1 \text{ nA to } \pm 0.5 \text{ A in 26 stops}$ $0.05\% @ > 2 \mu \text{A to 100}$ $0.5\% @ < 2 \mu \text{A or > 1}$ 10 pA 12 fA 2.5 pA 25 fA $1 \text{ I}\Omega // \pm 5 pF (typical IOI \Omega / 21 \text{ m}\Omega \text{ to 1 } G\Omega / 2$
Output C Controlled C Current Rar Min. Resolut Accuracy Input Potential Ra Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res Input Imped	Current solution ge solution ge current olution current olution dance e Range	Pot Hiz Pot U-buffer Pot Hiz Pot Hiz Pot Hiz Pot	$ \pm 2.5 A \pm 100 nA to \pm 2.5 A in 8 \pm 1 nA to ± 0.5 A in 10 0.025% 0.1% @ > 2 μA to 100 1% @ < 2 μA or > 10 ± 1, ±2, ±4 V ± 4, ±10 V 256.000 steps per range < 100 μV < 20 μV/°C ± 100 nA to ± 2.5 A in 2 ± 1 nA to ± 0.5 A in 26 0.05% @ > 2 μA to 100 0.5% @ < 2 μA or > 10 pA 12 tA 2.5 pA 25 tA 1 TΩ // ±5 pF (typica 1 nΩ to 1 GΩ / 2 100 mΩ to 1 0 MΩ / 0 .5 M .2 M$
Output C Controlled C Current Rar Min. Resolut Accuracy Potential Ra Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res Input Imped	Current solution ge solution ge solution ge current cluren	Pot HiZ Pot U-buffer Pot HiZ Pot HiZ Pot HiZ Pot	$\begin{array}{c} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \mu\text{A to 100} \\ 1\% @ < 2 \mu\text{A or > 10} \\ \hline \\ \pm 1, \pm 2, \pm 4 \text{ V} \\ \pm 4, \pm 10 \text{ V} \\ 256.000 \text{ steps per range} \\ < 100 \mu\text{V} \\ < 20 \mu\text{V/°C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 3} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 26} \\ \hline \\ 0.05\% @ > 2 \mu\text{A to 100} \\ 0.5\% @ < 2 \mu\text{A or > 10} \\ \hline \\ 10 \text{ pA} \\ 12 \text{ fA} \\ 2.5 \text{ pA} \\ 25 \text{ fA} \\ 1 \text{ I}\Omega // \pm 5 \text{ pF (typical 100 MO + 10 MO / 0)} \\ 100 \text{ m}\Omega \text{ to 10 MO / 0} \\ 100 \text{ m}\Omega \text{ to 100 MO / 0} \end{array}$
Output C Controlled C Current Rar Min. Resolut Accuracy Potential Ra Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res Input Imped	Current anges esolution ge beroture Stability ange current colution dance e Range	Pot HiZ U-buffer Pot HiZ Pot HiZ Pot HiZ Pot HiZ Cal	$\begin{array}{c} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \mu\text{A to 100} \\ 1\% @ < 2 \mu\text{A to 100} \\ 1\% @ < 2 \mu\text{A or > 10} \\ \end{array}$ $\begin{array}{c} \pm 1, \pm 2, \pm 4 \text{ V} \\ \pm 4, \pm 10 \text{ V} \\ 256.000 \text{ steps per range} \\ < 100 \mu\text{V} \\ < 20 \mu\text{V/°C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 3} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 26} \\ 0.05\% @ > 2 \mu\text{A to 100} \\ 0.5\% @ < 2 \mu\text{A or > 10} \\ 10 \text{ pA} \\ 12 \text{ fA} \\ 2.5 \text{ pA} \\ 25 \text{ fA} \\ 1 \text{ I} \Omega // \pm 5 \text{ pF (typical 100 \Omega)} \\ 100 \text{ m}\Omega \text{ to 10 M} / 0 \\ 100 \text{ m}\Omega \text{ to 10 M} / 0 \\ 100 \text{ m}\Omega \text{ to 10 M} / 0 \\ 100 \text{ m}\Omega \text{ to 10 M} / 0 \\ 100 \text{ m}\Omega \text{ to 10 M} / 2 \\ 30 \mu\Omega \text{ to 1 } \Omega / 2 \end{array}$
Output C Controlled a Current Rar Min. Resolut Accuracy Potential Ra Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res Input Imped Input Imped	Current anges esolution ge esolution ge current olution dance e Range	Pot Hiz Pot U-buffer Pot Hiz Pot Hiz Pot Hiz Pot Hiz Gal	$\begin{array}{c} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \mu\text{A to 100} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ \hline \\ \pm 1, \pm 2, \pm 4 \text{ V} \\ \pm 4, \pm 10 \text{ V} \\ 256.000 \text{ steps per range} \\ < 100 \mu\text{V} \\ < 20 \mu\text{V/°C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 3} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 26 stars} \\ 0.05\% @ < 2 \mu\text{A or > 10} \\ 0.5\% @ < 2 \mu\text{A or > 10} \\ 10 \text{ pA} \\ 12 \text{ fA} \\ 2.5 \text{ pA} \\ 25 \text{ fA} \\ 1 \text{ I}\Omega / \pm 5 \text{ pF (typical 10 \text{ I}\Omega) / 2 \text{ for } 10 \text{ M}\Omega / 0 \\ 100 \text{ m}\Omega \text{ to 1 } 10 \text{ M}\Omega / 0 \\ 100 \text{ m}\Omega \text{ to 1 0 } \text{M}\Omega / 0 \\ 100 \text{ m}\Omega \text{ to 1 0 } \Omega / 2 \\ 100 \text{ m}\Omega \text{ to 1 0 } \Omega / 2 \\ 86 \text{ dB @ 10 } \mu\text{Hz to 1} \end{array}$
Output C Controlled (Current Rar Min. Resolut Accuracy Input Potential Re Offset Volta Offset Volta Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res Input Imped Inpedance	Current anges esolution ge perature Stability age Current olution dance e Range	Pot HiZ Pot U-buffer Pot HiZ Pot HiZ Pot HiZ Pot HiZ Gal	$\begin{array}{c} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \mu\text{A to 100} \\ 1\% @ < 2 \mu\text{A or > 10} \\ \hline \\ \pm 1, \pm 2, \pm 4 \text{V} \\ \pm 4, \pm 10 \text{V} \\ 256.000 \text{ steps per range} \\ < 100 \mu\text{V} \\ < 20 \mu\text{V}^{2}\text{C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 3} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 26 steps} \\ 0.05\% @ > 2 \mu\text{A to 100} \\ 0.5\% @ < 2 \mu\text{A or > 1} \\ 10 \mu\text{A to } \pm 0.5 \text{ A in 26 steps} \\ 25 \text{fA} \\ 11 \Omega// \pm 5 \text{pF (typical 10 \Omega/ 2 100 \text{mA to 1 } 6\Omega/ 2 100 \text{mA to 1 } 100 \text{mA to 1 } 6\Omega/ 2 100 \text{mA to 1 } 100 \text{mA to 1 } 6\Omega/ 2 100 \text{mA to 1 } 100 $
Output G Controlled a Current Rar Min. Resolut Accuracy Input Potential Re Offset Volta Offset Volta Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res Input Imped Impedance Common M	Current anges esolution ge esolution ge current colution dance e Range fode Rejection nel Phase-	Pot HiZ Pot U-buffer Pot HiZ Pot HiZ Pot HiZ Gal	$\begin{array}{c} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \ \mu\text{A to 100} \\ 1\% @ < 2 \ \mu\text{A or } > 10 \\ \hline \end{array}$ $\begin{array}{c} \pm 1, \ \pm 2, \ \pm 4 \text{ V} \\ \pm 4, \ \pm 10 \text{ V} \\ 256.000 \text{ steps per range} \\ < 100 \ \mu\text{V} \\ < 20 \ \mu\text{V}^{\prime}\text{C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 12} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 26} \\ \hline 0.05\% @ > 2 \ \mu\text{A to 100} \\ 0.5\% @ < 2 \ \mu\text{A or } > 10 \\ \hline 10 \ \mu\text{V} \\ 25 \text{ FA} \\ 25 \ \text{FA} \\ 25 \ \text{FA} \\ 25 \ \text{FA} \\ 2100 \ m\Omega \text{ to 10} \ \Omega\Omega / 0 \\ 100 \ m\Omega \text{ to 100} \ \Omega\Omega / 3 \\ 30 \ \mu\Omega \text{ to 1} \ \Omega\Omega / 2 \\ 100 \ \text{m}\Omega \text{ to 100} \ \Omega\Omega / 3 \\ 30 \ \mu\text{D to 10} \ \Omega\Omega / 41 \\ \text{F} \ \text{F} \ \text{fypical} \\ 56 \ \text{dB} @ 10 \ \mu\text{Hz to 10} \\ 56 \ \text{dB} @ 10 \ \mu\text{Hz to 10} \\ \end{array}$
Output G Controlled o Current Rar Min. Resolut Accuracy Potential Ra Offset Volta Offset Volta Offset Volta Offset Volta Offset Temp Current Rar Accuracy Input Bias C Current Res Input Imped Impedance Common M Input Chan Tracking ac	Current solution ge solution ge berature Stability nge Current olution dance a Range Node Rejection nel Phase- curracy	Pot Hiz Pot U-buffer Pot Hiz Pot Hiz Pot Hiz Gal	$\begin{array}{c} \pm 2.5 \text{ A} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 8} \\ \pm 1 \text{ nA to } \pm 0.5 \text{ A in 10} \\ 0.025\% \\ 0.1\% @ > 2 \mu\text{A to 100} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 1\% @ < 2 \mu\text{A or > 10} \\ 100 \mu\text{V} \\ < 20 \mu\text{V}^{/2}\text{C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 10} \\ 100 \mu\text{V} \\ < 20 \mu\text{V}^{/2}\text{C} \\ \pm 100 \text{ nA to } \pm 2.5 \text{ A in 26} \\ 10.5\% @ < 2 \mu\text{A or > 10} \\ 10.5\% @ < 2 \mu\text{A or > 10} \\ 15 \mu\text{A to } \pm 0.5 \text{ A in 26} \\ 15 \mu\text{A to } \pm 0.5 \text{ A in 26} \\ 10 \Gamma\Omega / \pm 1 pF (typical 100 \ 0.5\% \ 0.5\% \ 0.25 \ 0.05 \ 0.00 \ 0.5\% \ 0.25 \ 0.00$

ZAHNER-ELEKTRIK GmbH & Co. KG website: http://www.zahner.de - email: support@zahner.de P.O.Box 1846 - D-96308 Kronach - Germany Tel.:+49-(0)9261-962119-0 - Fax:+49-(0)9261-962119-99

MESSSYSTEME

MESSSYSTEME

AHNER

ZAHNER

0..0

000-000

0...0

0--0

HIGHEND DATA ACQUISITION SYSTEMS

Milestones

In Scientific

Instrumentation

ostatic, pseudo-galvanostatic, rest potential, off

set, USB-cable, power cord, manual

decade

echnique

eps, automatic selection

stand)0 mA

24 steps, automatic range selection steps, automatic range selection 100 mA al), 50 G Ω // ±5 pF (min.) al), $1 T\Omega // \pm 1 pF$ (min.) 00 kHz MHz 100 kHz to 4 MHz 1 mHz to 10 Hz Representative in your country

ENNIUM N R AHNEI N

mical workstatio <u>electroche</u>

NNINN Ш N \mathbf{c} Ш AHNI N

orkstatio Š Q \odot electrochemi

Universal **Electrochemical Workstation**

ZAHNER ZENNIUM

electrochemical workstation

ZAHNER ZENNIUM THALES Z software package

Software

Based on the approved Thales software package, we extended the functionality, improved the supported methods and brushed up the look and feel.

All these innovations join in Thales Z (zennium release).

General fields of application

- low impedance applications
- (fuel cells, batteries, super-caps ...) high impedance applications
- photoelectrochemical applications
- organic LED, semiconducting films ...)

Look & Feel

- electrochemical method guide
- Windows® tooltips
- fast online help system

Special Functionalities

- joint multiple transfer function fitting
- documentation tasks
- multi-channel measuring data acquisition in parallel to the electrochemical experiments
- remote control via LabVIEW® VI

General

Our R&D team managed to create a completely new instrument with outstanding features, state-of-the-art hardware and a widely extended software as an advancement of the world-valued IM6eX. The result is a milestone in scientific instrumentation. ZENNIUM was developed using our 30 years of experience in producing high-precision electrochemical workstations of the high-end class. It provides a wider frequency range up to 4 MHz, an output current up to ±2.5 A and fast signal processing. Special measurement techniques guarantee an ultra high accuracy and a minimal interference with the test object.

ZENNIUM comes bundled with the outstanding Thales Z (zennium release) software package which offers all standard methods and more at a mouse click. This is why the ZENNIUM can easily be adapted to very different measurement requirements. Furthermore, with the manifold options available, the ZENNIUM is able to grow with its tasks. It is best suited for investigations on fuel cells, batteries and solar cells as well as on membranes and sensors or on coatings and laminates to name only a few.

ZAHNER-elektrik is known to provide competent service all around the world. Our experienced specialists help you to plan, set up and analyze your experiments in electrochemistry, physics, material science and electronics.

Option	Function	ext	Int	EPC42 needed
TEMP/U	2 inputs for thermocouples + 2 voltage inputs		х	
DA4	4 analog outputs		Х	
RMux	Relay multiplexer for the internal potentiostat		Х	
PwrMux	Power multiplexer for the PP series potentiostats	Х	Х	
TR8M	Transient recorder up to 40 MHz		Х	
HiZ probe	High impedance probe set	Х		
LoZ	Cable set for low impedances	Х		
EPC42	Control module for up to 4 external potentiostats		Х	
XPot	External standard potentiostat	Х		Х
PP series	External power potentiostats	Х		Х
EL series	External high current one quadrant potentiostats	Х		Х
NProbe	Probe set for measuring electrochemical noise	Х		Х
COLT	Set-up for coating and laminate testing			
CIMPS	Set-up for photo electrochemical applications	Х		Х
EIChem Cells	KMZ and AMZ type cells for various applications			

(Hardware

The hardware of the ZENNIUM provides

- ultra low-noise potentiostat
- wide frequency range dual DDS FRA
- high CMRR precision U/I-amplifiers
- PulSAR® state-of-the-art differential 18 bit ADCs for AC
- connectors optimized for High Z & Low Z
- 4 extension card slots
- 410 MIPS (Dhrystone 2.1) V4e ColdFire® signal processor
- floating USB interface

Accuracy

The highest priorities for the development and production of the ZENNIUM instruments are accuracy and reliability. The accuracy map of the ZENNIUM clearly shows the high auality of the hardware.

These specifications are real ones relevant to the use in practice, based on the high-end components we use.

ZAHNER ZENNIUM THALES Z software package